Statistik 1 – Tutorate Einheit: Tabellenanalyse

Marco Giesselmann, Aurelia De Martinis, Alex Geistlich, Dominic Truxius, Nora Zumbühl

Kreuztabelle mit R

Kreuztabellen

1

- Welchen Zusammenhang vermutet ihr zwischen den Merkmalen Geschlecht und Rauchverhalten? Greift auch die Zusammenhangsform (Asymmetrie?, Tendenz?) mit in der Vermutung auf.
- Startet ein neues R-Skript und ergänzt es mit einem Header, der die wichtigsten Metadaten (Titel, Autor, Datum, Zweck) enthält. Kommentiert euren Code durchgehend.
- Ladet die Kursdaten in R, aktiviert die tidyverse-Packages (*library (tidyverse)*)
- Inspiziert die zu den Merkmalen korrespondierenden Variablen **geschlecht** und **rauchen_aktuell** (attributes, table, class)
- Führt ggf. Variablenbereinigungen durch!!
- Sinnvoll, da es sich um kategoriale Variablen handelt: Faktorisierungen per as_factor.

geschlecht	rauchen_aktuell letzte Woche geraucht?
maennlich	0
weiblich	0
maennlich	1
weiblich	0
weiblich	1
weiblich	0
maennlich	1
weiblich	1
maennlich	0

Kreuztabellen

Inspektion z.B. per attributes: «rauchen_aktuell» enthält einen nicht korrekt als NA codierten fehlenden Wert!

daher...

kursdata_anon\$rauchen_aktuell[kursdata_anon\$rauchen_aktuell==-99]<-NA
table(kursdata_anon\$rauchen_aktuell)</pre>

Faktorisierung:

kursdata_anon\$geschlecht <- as_factor(kursdata_anon\$geschlecht)
kursdata_anon\$rauchen_aktuell <- as_factor(kursdata_anon\$rauchen_aktuell)</pre>

Häufiges Problem nach as factor: «Phantomkategorie»*

> table(kursdata_anon\$rauchen_aktuell)

nein ja 46 14

Löschung der Phantomkategorie durch:

kursdata_anon\$rauchen_aktuell<-fct_drop(kursdata_anon\$rauchen_aktuell)</pre>

geschlecht ‡	rauchen_aktuell letzte Woche geraucht?
maennlich	0
weiblich	0
maennlich	1
weiblich	0
weiblich	1
weiblich	0
maennlich	1
weiblich	1
maennlich	0

Über den tab_xtab() Befehl aus dem "sjPlot" Package lassen sich anschauliche Kreuztabellen erstellen.

•	Besc	hreil	bt c	len i	Tabel	llenaufbau
---	------	-------	------	-------	-------	------------

- Beschreibt die einzelnen Elemente des Befehls
- Wie viele Befragungspersonen rauchen aktuell?
- Wie gross ist deren Anteil?
- Was sagt der Prozentwert im Feld i=21 ("ja" & "weiblich") aus?
- Unterscheidet sich der Anteil aktuell Rauchender zwischen den Geschlechtern? Ermittle und Interpretiere die *Prozentsatzdifferenz*.
- Produziere eine Tabelle mit Zeilen- statt Spaltenprozenten

letzte Woche geraucht?	gesc	m . 1	
	weiblich	maennlich	Total
nein	36	10	46
	81.8 %	62.5 %	76.7 %
ja	8	6	14
	18.2 %	37.5 %	23.3 %
Total	44	16	60
	100 %	100 %	100 %

$$\chi^2 = 1.487 \cdot df = 1 \cdot \φ = 0.202 \cdot Fisher's p = 0.168$$

Über den tab_xtab() Befehl aus dem "sjPlot" Package lassen sich anschauliche Kreuztabellen erstellen.

.

letzte Woche

geraucht?

nein

ja

 Total
 44
 16
 60

 100 %
 100 %
 100 %

18.2 % 37.5 %

geschlecht

weiblich maennlich

10

62.5 %

36

81.8 %

Total

46

76.7 %

23.3 %

 $\chi^2 = 1.487 \cdot df = 1 \cdot \&phi = 0.202 \cdot Fisher's p = 0.168$

- Unter den weiblichen Personen rauchen aktuell etwa 18.2%, also ein knappes Fünftel
- Was sagt der Prozentwert im Feld unten links ("ja" & "weiblich") aus?
- Unterscheidet sich der Anteil aktuell Rauchender zwischen den Geschlechtern? Ermittle und Interpretiere die *Prozentsatzdifferenz*.

%d=19.3: Der Anteil aktuell Nicht-Rauchender ist unter den Frauen 19.3 Prozentpunkte grösser als unter den Männern. Oder: %d=-19.3: Der Anteil aktuell Rauchender ist unter Frauen 19.3 Prozentpunkte kleiner als unter den Männern.

Über den tab_xtab() Befehl aus dem "sjPlot" Package lassen sich anschauliche Kreuztabellen erstellen.

```
tab_xtab(var.row = kursdata_anon$rauchen_aktuell,
    var.col = kursdata_anon$geschlecht,
    show.row.prc = TRUE,
    show.obs = TRUE)
```

- Beschreibt den Tabellenaufbau
- Beschreibt die einzelnen Elemente des Befehls
- Wie viele Befragungspersonen rauchen aktuell?
- Wie gross ist deren Anteil?
- Was sagt der Prozentwert im Feld unten links ("ja" & "männlich") aus?
- Unterscheidet sich der Anteil aktuell Rauchender zwischen den Geschlechtern? Ermittle und Interpretiere die *Prozentsatzdifferenz*.
- Produziert eine Tabelle mit Zeilen- statt Spaltenprozenten mit dem Befehl

Kreuztabelle	Kreuztabelle: Rauchstatus nach Geschlecht				
letzte Woche	gesc	<i>m</i> . 1			
geraucht?	weiblich	maennlich	Total		
nein	36	10	46		
	78.3 %	21.7 %	100 %		
ja	8	6	14		
	57.1 %	42.9 %	100 %		
Total	44	16	60		
	73.3 %	26.7 %	100 %		

 $\chi^2 = 1.487 \cdot df = 1 \cdot \&phi = 0.202 \cdot Fisher's p = 0.168$

Über den tab_xtab() Befehl aus dem "sjPlot" Package lassen sich anschauliche Kreuztabellen erstellen.

```
tab_xtab(var.row = kursdata_anon$rauchen_aktuell,
    var.col = kursdata_anon$geschlecht,
    show.row.prc = TRUE,
    show.obs = TRUE)
```

- Was sagt der Prozentwert im Feld unten links ("ja" & "weiblich") nun aus?
- Was sagt der Prozentwert im Feld oben rechts ("männlich" & "nein") aus?
- Lässt die so formatierte Kreuztabelle einen Rückschluss auf den Zusammenhang zwischen den beiden Variablen zu?
- Warum ist dieser Differenzwert trotzdem nicht die *richtige* Prozentsatzdifferenz des Zusammenhangs?

Kreuztabelle: Rauchstatus nach Geschlecht

letzte Woche	gesc	<i>T</i> . 1	
geraucht?	weiblich	maennlich	Total
nein	36	10	46
	78.3 %	21.7 %	100 %
ja	8	6	14
	57.1 %	42.9 %	100 %
Total	44	16	60
	73.3 %	26.7 %	100 %

$$\chi^2 = 1.487 \cdot df = 1 \cdot \φ = 0.202 \cdot Fisher's p = 0.168$$

Kreuztabellen

Ist die Tabelle in dieser Form vollständig und publikationswürdig?

letzte Woche	gesc		
geraucht?	weiblich	maennlich	Total
nein	36	10	46
	81.8 %	62.5 %	76.7 %
ja	8	6	14
	18.2 %	37.5 %	23.3 %
Total	44	16	60
	100 %	100 %	100 %

 $\chi^2 = 1.487 \cdot df = 1 \cdot \&phi = 0.202 \cdot Fisher's p = 0.168$

Weitere Bearbeitungsschritte zur Publikation:

- Titel, Untertitel, Datenquelle
- Generelle Formatierungsarbeiten, Schriftgrösse?
- Kann z.T. über Suboptionen innerhalb des Befehls spezifiziert werden, grundsätzlich aber extern (z.B. Word oder Powerpoint)

Externe Weiterverarbeitung / Export:

- Die Tabelle wird automatisch im "Viewer"-Tab der R-Studio Konsole (rechts unten) angezeigt.
- Einfach per select/copy/paste in andere Dokumente bzw. Formate einfügen

Grafische Darstellung kreuztabellarischer Zusammenhänge

Visualisierung von Kreuztabellen

Achtung: Anders als Tabellenkommandos integrieren ggplot-Befehle Fehlende Werte (NAs) in die Darstellung. Das ist meistens schlecht – siehe HP

Daher vorab:

kursdata_rauchplot <- filter(kursdata_anon, !is.na(geschlecht) & !is.na(rauchen_aktuell))</pre>

Analysespezifischer Datensatz

Achtung:

Funktioniert (natürlich) nur dann, wenn fehlende Werte korrekt als «NA» definiert wurden. Ggf. nochmal checken!

Stacked Barplot: Visualisierung gemeinsamer Verteilung

Wofür stehen hier jeweils die beiden Säulen?

geom_bar(position = "fill") +

theme_bw()

labs(title = "Rauchstatus nach Geschlecht",

scale_y_continuous(labels = scales::percent) +

- Wo werden die Säulenkategorien im Code definiert?
- Repräsentieren die linken 100% gleich viele Personen wie die rechten 100%?
- Was kennzeichnet jeweils die rote Fläche?
- Wo werden die säuleninternen Farbkategorien im Code definiert?

ggplot(kursdata_rauchplot, aes(x = geschlecht, fill = rauchen_aktuell)) +

x = "Geschlecht", y = "Prozent", fill="Aktuell Rauchend", caption="Quelle: Kursbefragung Statistik I (n = 53)") +

Wo wird in dieser Abbildung die Prozentsatzdifferenz visualisiert?

Stacked Barplot: Visualisierung gemeinsamer Verteilung

Bilde ein Säulendiagramm ab

Fülle die «geoms» (hier: Säulen) *nicht* mit einer bestimmten Farbe (z.B. fill=«red»), sondern jeweils entsprechend der Verteilung der «rauchen»-Variable

- die Kategotieren der Füllvariable sollen dabei

als Anteilswerte dargestellt werden

Multipliziere die y-Werte mit 100 und stelle sie mit Prozentzeichen dar

Alternative "Dodge"-Plot – Unterschiede in der Darstellung?

Quelle: Kursbefragung Statistik I (n = 60)

2. Kreuztabelle: Weiteres Beispiel aus der Kursbefragung

Wir wollen prüfen, in welchem Zusammenhang die *Elterliche Bildung* und das *allgemeine Vertrauen* innerhalb des Kurses stehen. Dazu verwenden wir die Variablen **akback** und zusätzlich **trustkat**.

- I. Inspiziert die generierte (rekodierte) Variable **trustkat**. In welchem Verhältnis steht diese zur (Originalvariable) **trust**?
- II. Formuliert und begründet eine **Hypothese** zu den beiden Variablen
- III. Erstellt eine **Kreuztabelle** welche die gemeinsame Verteilung der beiden Variablen sinnvoll (im Sinne der formulierten Hypothese) abbildet.
- IV. Wertet die Tabelle in einem inhaltlich gehaltvollen Antwortsatz aus (**Prozentsatzdifferenz!**).
- V. Visualisiert den Zusammenhang
- VI. Berechnet den Wert von Cramers V per Hand aus dem Chi2-Wert im Output.
- VII. Stützt Eure Auswertung der Prozentsatzdifferenz durch Cramers V
- VIII. Stützt Eure Auswertung durch Einbindung der Test-Statistik des Chi-Quadrat Tests

2. Kreuztabelle: Weiteres Beispiel aus der Kursbefragung

Wir wollen prüfen, in welchem Zusammenhang die *Elterliche Bildung* und das *allgemeine Vertrauen* innerhalb des Kurses stehen. Dazu verwenden wir die Variablen **akback** und zusätzlich **trustkat**.

- I. Inspiziert die generierte (rekodierte) Variable **trustkat**. In welchem Verhältnis steht diese zur (Originalvariable) **trust**?
- II. Formuliert und begründet eine **Hypothese** zu den beiden Variablen
- III. Erstellt eine **Kreuztabelle** welche die gemeinsame Verteilung der beiden Variablen sinnvoll (im Sinne der formulierten Hypothese) abbildet.
- IV. Wertet die Tabelle in einem inhaltlich gehaltvollen Antwortsatz aus (Prozentsatzdifferenz!).
- V. Ermittelt Lambda
- VI. Visualisiert den Zusammenhang
- VII. Ermittelt die Indifferenztabelle per Hand (vollständig, definiert für alle 6 Felder)
- VIII. Ermittelt die Indifferenztabelle mit tab_xtab
- IX. Ermittelt den Chi-Quadrat-Wert der Tabelle per Hand
- X. Berechnet den Wert von Cramers V per Hand aus dem Chi2-Wert im Output.
- XI. Stützt Eure Auswertung der Prozentsatzdifferenz durch Cramers V
- XII. Stützt Eure Auswertung durch Einbindung der Test-Statistik des Chi-Quadrat Tests
- XIII. Vertauscht Spalten und Zeilen welche Werte ändern sich? Welche bleiben gleich?

2. Kreuztabelle: Weiteres Beispiel aus der Kursbefragung

Wir wollen prüfen, in welchem Zusammenhang die *Elterliche Bildung* und das *allgemeine Vertrauen* innerhalb des Kurses stehen. Dazu verwenden wir die Variablen **akback** und zusätzlich **trustkat**.

- I. Inspiziert die generierte (rekodierte) Variable trustkat. In welchem Verhältnis steht diese zur (Originalvariable) trust?
- II. Formuliert und begründet eine **Hypothese** zu den beiden Variablen
- III. Erstellt eine Kreuztabelle welche die gemeinsame Verteilung der beiden Variablen sinnvoll (im Sinne der formulierten Hypothese) abbildet.
- IV. Wertet die Tabelle in einem inhaltlich gehaltvollen Antwortsatz aus (Prozentsatzdifferenz!).
- V. Visualisiert den Zusammenhang
- VI. Ermittelt die Indifferenztabelle per Hand (vollständig, definiert für alle 6 Felder
- VII. Ermittelt die Indifferenztabelle mit tab xtab
- VIII. Ermittelt den Chi-Quadrat-Wert der Tabelle per Hand
- IX. Berechnet den Wert von Cramers V per Hand aus dem Chi2-Wert im Output.
- X. Stützt Eure Auswertung der Prozentsatzdifferenz durch Cramers V
- XI. Stützt Eure Auswertung durch Einbindung der Test-Statistik des Chi-Quadrat Tests
- XII. Vertauscht Spalten und Zeilen welche Werte ändern sich? Welche bleiben gleich?

trust und trustkat – wie rekodiert?

baseR::table – nicht geeignet für inhaltlich motivierte Kreuztabellen, aber schnell und praktisch zum Check von Variablenrekodierungen

id ‡	trust Kann man Menschen im Allg. vertrauen? (5-volle Zustimmung, 1-v	\$	trustkat Allg. Vertrauen (kat.)
77		4	Viel
76		2	Gering
78		5	Viel
49		3	Mittel
79		3	Mittel
81		2	Gering
82		3	Mittel
80		1	Gering
86		3	Mittel

Die ursprünglichen (relativ dünn belegten) Randausprägungen 1 und 5 in **trust** wurden in **trustkat** mit den anliegenden Ausprägungen 2 und 4 gruppiert, wodurch dann eine trichotome Variable mit den Ausprägungen 1 ("Gering") 2 ("Mittel") und 3 ("Viel") entsteht.

```
> table(as_factor(kursdata_anon$akback),
+ as_factor(kursdata_anon$eltern))

    beide einer keiner
nein 0 0 21
ja 25 19 0
```

Die dichotomisierte Variable *akback* unterscheidet zwischen Studierenden, bei denen mindestens ein Elternteil einen akademischen Abschluss hat und denen, bei denen kein Elternteil einen akademischen Abschluss hat.

Kreuztabelle: Vertrauen nach Bildungshintergrund

Vertrauen in	Akademi		
Mitmenschen	nein	ja	Total
Gering	4	7	11
	19 %	15.9 %	16.9 %
Mittel	8	14	22
	38.1 %	31.8 %	33.8 %
Viel	9	23	32
	42.9 %	52.3 %	49.2 %
Total	21	44	65
	100 %	100 %	100 %

 $[\]chi^2 = 0.504 \cdot df = 2 \cdot Cramer's V = 0.088 \cdot Fisher's p = 0.760$

Auswertung nach Prozentsatzdifferenz?

Kreuztabelle: Vertrauen nach Bildungshintergrund

Vertrauen in	Akademi		
Mitmenschen	nein	ja	Total
Gering	4	7	11
	19 %	15.9 %	16.9 %
Mittel	8	14	22
	38.1 %	31.8 %	33.8 %
Viel	9	23	32
	42.9 %	52.3 %	49.2 %
Total	21	44	65
	100 %	100 %	100 %

 $[\]chi^2 = 0.504 \cdot df = 2 \cdot Cramer's \ V = 0.088 \cdot Fisher's \ p = 0.760$

Musterauswertung, Beispiel (mehrere Varianten und Lösungen möglich):

....die bedingten Verteilungen der Vertrauensvariable unterscheiden sich grundsätzlich nicht stark zwischen Akademiker- und Arbeiterkindern – eine Wirkung der unabhängigen auf die abhängige Variable lässt sich nur ansatzweise erkennen. Gleichwohl beträgt die Prozentsatzdifferenz in der höchsten Kategorie immerhin fast 10 Prozentpunkte: Unter den Akademikerkindern ist der Anteil derjenigen, die hohes Vertrauen in ihre Mitmenschen haben, 9.4 Prozentpunkte grösser als unter Arbeiterkindern. Dies markiert einen inhaltlich bedeutsamen Unterschied.

Kreuztabelle: Vertrauen nach Bildungshintergrund

Vertrauen in	Akademi	I	
Mitmenschen	nein	ja	Total
Gering	4	7	11
	19 %	15.9 %	16.9 %
Mittel	8	14	22
	38.1 %	31.8 %	33.8 %
Viel	9	23	32
	42.9 %	52.3 %	49.2 %
Total	21	44	65
	100 %	100 %	100 %

 $\chi^2 = 0.504 \cdot df = 2 \cdot Cramer's V = 0.088 \cdot Fisher's p = 0.760$

Lambda?

Kreuztabelle: Vertrauen nach Bildungshintergrund

Vertrauen in	Akademi		
Mitmenschen	nein	ja	Total
Gering	4	7	11
	19 %	15.9 %	16.9 %
Mittel	8	14	22
	38.1 %	31.8 %	33.8 %
Viel	9	23	32
	42.9 %	52.3 %	49.2 %
Total	21	44	65
	100 %	100 %	100 %

 $[\]chi^2 = 0.504 \cdot df = 2 \cdot Cramer's \ V = 0.088 \cdot Fisher's \ p = 0.760$

Quelle: Kursbefragung Statistik I (n = 76)

Kreuztabelle: Vertrauen nach Bildungshintergrund

Vertrauen in	Akademikerkind?		
Mitmenschen	nein	ja	Total
Gering	4	7	11
	19 %	15.9 %	16.9 %
Mittel	8	14	22
	38.1 %	31.8 %	33.8 %
Viel	9	23	32
	42.9 %	52.3 %	49.2 %
Total	21	44	65
	100 %	100 %	100 %

 $[\]chi^2 = 0.504 \cdot df = 2 \cdot Cramer's \ V = 0.088 \cdot Fisher's \ p = 0.760$

Quelle: Kursbefragung Statistik I (n = 76)

- Ordnet die Kategorien in den Säulen neu und intuitiver: Niedriges Vertrauen unten, hohes Vertrauen oben
- Was tun, wenn Grautöne gefordert sind?

Neuordnung der Kategorien im Rahmen der Faktorisierung

- Ordnet die Kategorien in den Säulen neu und intuitiver: Niedriges Vertrauen unten, hohes Vertrauen oben
- Was tun, wenn Grautöne gefordert sind?

- Ordnet die Kategorien in den Säulen neu und intuitiver: Niedriges Vertrauen unten, hohes Vertrauen ober
- Was tun, wenn Grautöne gefordert sind?

- Ordnet die Kategorien in den Säulen neu und intuitiver: Niedriges Vertrauen unten, hohes Vertrauen ober
- Was tun, wenn Grautöne gefordert sind?

Kreuztabelle: Vertrauen nach Bildungshintergrund

Bildungshintergrund			
Vertrauen in	Akademikerkind?		
Mitmenschen	nein	ja	Total
	4	7	11
Gering	4	7	11
C	19 %	15.9 %	16.9 %
	8	14	22
Mittel	7	15	22
	38.1 %	31.8 %	33.8 %
Viel	9	23	32
	10	22	32
	42.9 %	52.3 %	49.2 %
Total	21	44	65
	21	44	65
	100 %	100 %	100 %

 $\chi^2 = 0.504 \cdot df = 2 \cdot Cramer's \ V = 0.088 \cdot Fisher's \ p = 0.784$

Indifferenztabelle per Hand:

21*11/65	44*11/65
=3.55	=7.45
21*22/65	44*22/65
=7.11	=14.89
21*32/65	44*32/65
=10.34	=21.66

Chi_Quadrat per Hand:

-0.45 ² / 3.55	0.45 ² /7.45
= 0.06	=0.03
0.89 ² /7.11	-0.89 ² / 14.89
=0.11	=0.05
-1.34 ² /10.34	1.34 ² / 21.66
=0.17	=0.08

Kreuztabelle: Vertrauen nach

Vertrauen in	Akademikerkind?		
Mitmenschen	nein	ja	Total
	4	7	11
Gering	4	7	11
_	19 %	15.9 %	16.9 %
	8	14	22
Mittel	7	15	22
	38.1 %	31.8 %	33.8 %
Viel	9	23	32
	10	22	32
	42.9 %	52.3 %	49.2 %
Total	21	44	65
	21	44	65
	100 %	100 %	100 %

 $\chi^2 = 0.504 \cdot 4f = 2 \cdot Cramer's V = 0.088 \cdot Fisher's p = 0.784$

Indifferenztabelle per Hand:

21*11/65	44*11/65
=3.55	=7.45
21*22/65	44*22/65
=7.11	=14.89
21*32/65	44*32/65
=10.34	=21.66

Chi_Quadrat per Hand:

-0.45 ² / 3.55	0.45 ² /7.45
= 0.06	=0.03
$0.89^2 / 7.11$ = 0.11	-0.89 ² / 14.89 =0.05
-1.34 ² /10.34	1.34 ² / 21.66
=0.17	=0.08

$$\Sigma = 0.5$$

Kreuztabelle: Vertrauen nach Bildungshintergrund

Vertrauen in	Akademikerkind?		
Mitmenschen	nein	ja	Total
	4	7	11
Gering	4	7	11
	19 %	15.9 %	16.9 %
	8	14	22
Mittel	7	15	22
	38.1 %	31.8 %	33.8 %
Viel	9	23	32
	10	22	32
	42.9 %	52.3 %	49.2 %
Total	21	44	65
	21	44	65
	100 %	100 %	100 %
2			

 $\chi^2 = 0.504 \cdot df = 2 \cdot Cramer's V = 0.088 Fisher's p = 0.784$

Indifferenztabelle per Hand:

21*11/65	44*11/65
=3.55	=7.45
21*22/65	44*22/65
=7.11	=14.89
21*32/65	44*32/65
=10.34	=21.66

Chi_Quadrat per Hand:

-0.45 ² / 3.55 = 0.06	0.45 ² /7.45 =0.03
$0.89^2 / 7.11$ = 0.11	-0.89 ² / 14.89 =0.05
-1.34 ² /10.34 =0.17	$1.34^{2} / 21.66$ $= 0.08$

Cramer's V per Hand:

$$\sqrt{\frac{0.5}{65*1}} = 0.088$$

Bewertung Cramer's V:

Nach gängigen Klassifikationen (siehe Vorlesung) drückt Cramer's V hier einen schwachen Zusammenhang aus. Somit stützt es unsere Einschätzung aus der vergleichenden Betrachtung der Verteilungen der AV: Insgesamt sind diese sich zwischen den Akademiker- und Arbeiterkindern verhältnismässig ähnlich, insb. zur hohen Kategorie der AV ergibt sich jedoch eine veritable Prozentsatzdifferenz.

Kreuztabelle: Vertrauen nach

Bildungshintergrund			
Vertrauen in	Akademikerkind?		
Mitmenschen	nein	ja	Total
	4	7	11
Gering	4	7	11
C	19 %	15.9 %	16.9 %
	8	14	22
Mittel	7	15	22
	38.1 %	31.8 %	33.8 %
Viel	9	23	32
	10	22	32
	42.9 %	52.3 %	49.2 %
Total	21	44	65
	21	44	65
	100 %	100 %	100 %

 $\chi^2 = 0.504 \cdot df = 2 \cdot Cramer's \ V = 0.088 \ Fisher's \ p = 0.784$

Indifferenztabelle per Hand:

21*11/65	44*11/65
=3.55	=7.45
21*22/65	44*22/65
=7.11	=14.89
21*32/65	44*32/65
=10.34	=21.66

Chi_Quadrat per Hand:

-0.45 ² / 3.55	$0.45^2 / 7.45$
= 0.06	= 0.03
$0.89^{2} / 7.11$ $= 0.11$	-0.89 ² / 14.89 =0.05
-1.34 ² /10.34	1.34 ² / 21.66
=0.17	=0.08

 $\Sigma = 0.5$

Inferenzstatistische Hypothesenbewertung:

- Der Zufall produziert *sehr oft* ein Tabellenmuster wie das vorliegende oder ein extremeres. Die Nullhypothese, dass in der Population *Unabhängigkeit zwischen dem Bildungshintergrund und dem Vertrauen* besteht, kann auf also Basis des Stichprobenergebnisses *nicht abgelehnt* werden (chi²=0.5, p>0,05).
- Eine unserer Analyse möglicherweise zugrunde liegende einseitige Hypothese ist mit der nominalen Logik des Chi-Quadrat Unabhängigkeitstest nicht vereinbar und somit auch nicht exakt testbar. Der p-Wert kann also dann nur sehr tentativ und defensiv in die Auswertung eingebunden werden.

Kreuztabelle: Vertrauen nach Bildungshintergrund

Vertrauen in	Akademi	Total	
Mitmenschen	nein	nein ja	
Gering	4	7	11
	19 %	15.9 %	16.9 %
Mittel	8	14	22
	38.1 %	31.8 %	33.8 %
Viel	9	23	32
	42.9 %	52.3 %	49.2 %
Total	21	44	65
	100 %	100 %	100 %

 $\chi^2=0.504 \cdot df=2 \cdot Cramer's V=0.088 \cdot Fisher's p=0.760$

Kreuztabelle: Vertrauen und Bildungshintergrund

Akademikerkind?	Vertrauen in Mitmenschen			Total
	Gering	Mittel	Viel	Total
nein	4	8	9	21
	36.4 %	36.4 %	28.1 %	32.3 %
ja	7	14	23	44
	63.6 %	63.6 %	71.9 %	67.7 %
Total	11	22	32	65
	100 %	100 %	100 %	100 %

 $\chi^2 = 0.504 \cdot df = 2 \cdot Cramer's \ V = 0.088 \cdot Fisher's \ p = 0.780$

Spalten und Zeilen vertauschen – was ändert sich?

- Durch Chi² indizierte Unabhängigkeitsabweichung ist identisch.
- Dementsprechend auch Cramer's V und Teststatistik identisch
- Unter Beibehaltung von UV und AV verändert sich Berechnungslogik von Lambda (welches aber bei Beibehaltung von UV und AV stets identisch bleibt)
- Spaltenprozente der umgeformten Tabelle (wegen des unkonventionellen Aufbaus) nicht mehr im Sinne der antizipierten Kausalrichtung interpretierbar, aber:
- Spaltenprozente der Ausgangstabelle und Zeilenprozente der umgeformten Tabelle sind identisch (oben nicht explizit dargestellt).

Kreuztabelle: Vertrauen nach Bildungshintergrund

Vertrauen in	Akademi			
Mitmenschen	nein	ja	Total	
Gering	4	7	11	
	19 %	15.9 %	16.9 %	
Mittel	8	14	22	
	38.1 %	31.8 %	33.8 %	
Viel	9	23	32	
	42.9 %	52.3 %	49.2 %	
Total	21	44	65	
	100 %	100 %	100 %	

 $\chi^2 = 0.504 \cdot df = 2 \cdot Cramer's \ V = 0.088 \cdot Fisher's \ p = 0.760$

Kreuztabelle: Vertrauen und Bildungshintergrund

Akademikerkind?	Vertrauen in Mitmenschen			Total
	Gering	Mittel	Viel	Total
nein	4	8	9	21
	36.4 %	36.4 %	28.1 %	32.3 %
ja	7	14	23	44
	63.6 %	63.6 %	71.9 %	67.7 %
Total	11	22	32	65
	100 %	100 %	100 %	100 %

 $\chi^2 = 0.504 \cdot df = 2 \cdot Cramer's \ V = 0.088 \cdot Fisher's \ p = 0.780$

Fragen?

Weitere Übung

http://www.suz.uzh.ch/dataforstat/