Combining approximate zero constraints for measurement invariance and cross-loadings: An application of dual process growth curve models with panel data

Daniel Seddig

University of Zurich

Institute of Sociology

Meeting of the Working Group Structural Equation Modeling
Zurich, 2016
1. Bayesian SEM
 - Measurement invariance
 - Cross-loadings

2. Illustration
 - Substantive question
 - Data
 - Results I: cross-loadings
 - Results II: measurement invariance
 - Results III: final model
Bayesian SEM

- Measurement invariance
- Cross-loadings

Illustration

- Substantive question
- Data
- Results I: cross-loadings
- Results II: measurement invariance
- Results III: final model
\[Y_{k,t} = T_{k,t} + \Lambda_{k,t}\eta_t + \Theta_{\varepsilon_k,t} \quad k = 1, \ldots, K; t = 1, \ldots, T \]
\[Y_{k,t} = T_{k,t} + \Lambda_{k,t}\eta_t + \Theta\epsilon_{k,t} \quad k = 1, \ldots, K; t = 1, \ldots, T \quad (1) \]

(a) Exact MI in \(\Lambda_{k,t} \):

\[
\begin{align*}
\lambda_{1,1} &= \lambda_{1,2} = \ldots = \lambda_{1,T} \\
\lambda_{2,1} &= \lambda_{2,2} = \ldots = \lambda_{2,T} \\
\vdots &= \vdots = \ldots = \vdots \\
\lambda_{K,1} &= \lambda_{K,2} = \ldots = \lambda_{K,T}
\end{align*}
\]

Highest level of stringency

Differences across group/time exactly zero
Bayesian SEM
Measurement invariance

\[Y_{k,t} = T_{k,t} + \Lambda_{k,t}\eta_t + \Theta\varepsilon_{k,t} \quad k = 1, \ldots, K; t = 1, \ldots, T \quad (1) \]

(a) Exact MI in \(\Lambda_{k,t} \):

\[\lambda_{1,1} = \lambda_{1,2} = \ldots = \lambda_{1,T} \]
\[\lambda_{2,1} = \lambda_{2,2} = \ldots = \lambda_{2,T} \]
\[\vdots = \vdots = \ldots = \vdots \]
\[\lambda_{K,1} = \lambda_{K,2} = \ldots = \lambda_{K,T} \]

- Highest level of stringency
- Differences across group/time exactly zero

(b) Approximate MI in \(\Lambda_{k,t} \):

\[\lambda_{1,1} \approx \lambda_{1,2} \approx \ldots \approx \lambda_{1,T} \]
\[\lambda_{2,1} \approx \lambda_{2,2} \approx \ldots \approx \lambda_{2,T} \]
\[\vdots \approx \vdots \approx \ldots \approx \vdots \]
\[\lambda_{K,1} \approx \lambda_{K,2} \approx \ldots \approx \lambda_{K,T} \]

- Flexibility, “wiggle room” (Van de Schoot et al., 2013)
- Identification of non-invariants: “two-step Bayesian analysis procedure” (Muthén & Asparouhov, 2013)
Bayesian SEM
Prior distributions for approximate zero constraints

Figure 1: Priors for exact (a) and approximate (b) MI

Prior for exact zero differences in λs between groups/time points

$\lambda_{\text{diff}} \sim N(0,0.00)$

Prior for approximate zero differences in λs between groups/time points

$\lambda_{\text{diff}} \sim N(0,0.01)$

95%
1 Bayesian SEM
 - Measurement invariance
 - Cross-loadings

2 Illustration
 - Substantive question
 - Data
 - Results I: cross-loadings
 - Results II: measurement invariance
 - Results III: final model
Bayesian SEM

Cross-loadings

- **Exact zero cross-loadings**

\[
\begin{pmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4 \\
 y_5 \\
 y_6 \\
 y_7 \\
 y_8
\end{pmatrix} =
\begin{pmatrix}
 \lambda_{y_{11}} = 1 & \lambda_{y_{12}} = 0 \\
 \lambda_{y_{21}} & \lambda_{y_{22}} = 0 \\
 \lambda_{y_{31}} & \lambda_{y_{32}} = 0 \\
 \lambda_{y_{41}} & \lambda_{y_{42}} = 0 \\
 \lambda_{y_{51}} = 0 & \lambda_{y_{52}} = 1 \\
 \lambda_{y_{61}} = 0 & \lambda_{y_{62}} \\
 \lambda_{y_{71}} = 0 & \lambda_{y_{72}} \\
 \lambda_{y_{81}} = 0 & \lambda_{y_{82}}
\end{pmatrix}
\ast
\begin{pmatrix}
 \eta_1 \\
 \eta_2
\end{pmatrix}
+ \begin{pmatrix}
 \varepsilon_1 \\
 \varepsilon_2 \\
 \varepsilon_3 \\
 \varepsilon_4 \\
 \varepsilon_5 \\
 \varepsilon_6 \\
 \varepsilon_7 \\
 \varepsilon_8
\end{pmatrix}
\]

(4)
Bayesian SEM

Cross-loadings

- **Exact zero cross-loadings**

\[
\begin{pmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4 \\
 y_5 \\
 y_6 \\
 y_7 \\
 y_8
\end{pmatrix} = \begin{pmatrix}
 \lambda_{y11} = 1 & \lambda_{y12} = 0 \\
 \lambda_{y21} & \lambda_{y22} = 0 \\
 \lambda_{y31} & \lambda_{y32} = 0 \\
 \lambda_{y41} & \lambda_{y42} = 0 \\
 \lambda_{y51} = 0 & \lambda_{y52} = 1 \\
 \lambda_{y61} = 0 & \lambda_{y62} \\
 \lambda_{y71} = 0 & \lambda_{y72} \\
 \lambda_{y81} = 0 & \lambda_{y82}
\end{pmatrix} \ast \begin{pmatrix}
 \eta_1 \\
 \eta_2
\end{pmatrix} + \begin{pmatrix}
 \varepsilon_1 \\
 \varepsilon_2 \\
 \varepsilon_3 \\
 \varepsilon_4 \\
 \varepsilon_5 \\
 \varepsilon_6 \\
 \varepsilon_7 \\
 \varepsilon_8
\end{pmatrix}
\] (4)

- **Approximate zero cross-loadings**

\[
\begin{pmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4 \\
 y_5 \\
 y_6 \\
 y_7 \\
 y_8
\end{pmatrix} = \begin{pmatrix}
 \lambda_{y11} = 1 & \lambda_{y12} \approx 0 \\
 \lambda_{y21} & \lambda_{y22} \approx 0 \\
 \lambda_{y31} & \lambda_{y32} \approx 0 \\
 \lambda_{y41} & \lambda_{y42} \approx 0 \\
 \lambda_{y51} \approx 0 & \lambda_{y52} = 1 \\
 \lambda_{y61} \approx 0 & \lambda_{y62} \\
 \lambda_{y71} \approx 0 & \lambda_{y72} \\
 \lambda_{y81} \approx 0 & \lambda_{y82}
\end{pmatrix} \ast \begin{pmatrix}
 \eta_1 \\
 \eta_2
\end{pmatrix} + \begin{pmatrix}
 \varepsilon_1 \\
 \varepsilon_2 \\
 \varepsilon_3 \\
 \varepsilon_4 \\
 \varepsilon_5 \\
 \varepsilon_6 \\
 \varepsilon_7 \\
 \varepsilon_8
\end{pmatrix}
\] (5)

Seddig, Daniel (UZH) Approximate MI and zero CLs 07.04.2016, Zurich
1 Bayesian SEM
 - Measurement invariance
 - Cross-loadings

2 Illustration
 - Substantive question
 - Data
 - Results I: cross-loadings
 - Results II: measurement invariance
 - Results III: final model
1 Bayesian SEM
- Measurement invariance
- Cross-loadings

2 Illustration
- Substantive question
- Data
- Results I: cross-loadings
- Results II: measurement invariance
- Results III: final model
Illustration

Hedonism and associating with delinquent peer groups in adolescence
Hedonism and associating with delinquent peer groups in adolescence

- **Hedonism**: Pleasure and sensuous gratification
- **Stimulation**: Excitement, novelty, and challenge in life
- **Hedonism/Stimulation ↔ Delinquent Peer Groups**
- **Development**: as adolescents interest in both dimensions decreases, associations with delinquent peer groups decreases
Bayesian SEM

- Measurement invariance
- Cross-loadings

Illustration

- Substantive question
- Data
 - Results I: cross-loadings
 - Results II: measurement invariance
 - Results III: final model
“Crimoc-study”; German criminological panel study

Panel data; $n=357$ male respondents; ages 14 to 20

Beliefs about hedonism/stimulation (scaled 1-5):
- h_1: understanding for people who do what they desire
- h_2: need for excitement
- h_3: living a life of pleasure

Association with violent peer group (scaled 1-5):
- g_1: group enforces interests with force
- g_2: group involved in brawls
1 Bayesian SEM
 • Measurement invariance
 • Cross-loadings

2 Illustration
 • Substantive question
 • Data
 • Results I: cross-loadings
 • Results II: measurement invariance
 • Results III: final model
Illustration
Cross-loadings: BCFA

Figure 2: CFA with cross-loadings
Table 1: BCFA model assessment for age 18 (n=357)

<table>
<thead>
<tr>
<th>Prior (λ_{CL})</th>
<th>BIC</th>
<th>DIC</th>
<th>PPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sim N(0,0.000)$</td>
<td>5021</td>
<td>4958</td>
<td>0.030</td>
</tr>
<tr>
<td>$\sim N(0,0.001)$</td>
<td>5045</td>
<td>4953</td>
<td>0.102</td>
</tr>
<tr>
<td>$\sim N(0,0.010)$</td>
<td>5033</td>
<td>4944</td>
<td>0.453</td>
</tr>
<tr>
<td>$\sim N(0,0.050)$</td>
<td>5031</td>
<td>4943</td>
<td>0.509</td>
</tr>
<tr>
<td>$\sim N(0,0.100)$</td>
<td>5031</td>
<td>4943</td>
<td>0.512</td>
</tr>
</tbody>
</table>

Note: BIC = Bayesian information criterion; DIC = deviance information criterion; PPP = posterior predictive p-value.
Illustration

Cross-loadings: BCFA with $\sim \mathcal{N}(0,0.010)$

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Posterior S.D.</th>
<th>One-Tailed P-Value</th>
<th>95% C.I. Lower 2.5%</th>
<th>95% C.I. Upper 2.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>group_18 BY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g1_18</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>g2_18</td>
<td>0.856</td>
<td>0.159</td>
<td>0.000</td>
<td>0.652</td>
<td>1.242</td>
</tr>
<tr>
<td>h1_18</td>
<td>-0.063</td>
<td>0.087</td>
<td>0.233</td>
<td>-0.235</td>
<td>0.104</td>
</tr>
<tr>
<td>h2_18</td>
<td>0.152</td>
<td>0.079</td>
<td>0.034</td>
<td>-0.012</td>
<td>0.297</td>
</tr>
<tr>
<td>h3_18</td>
<td>-0.012</td>
<td>0.076</td>
<td>0.438</td>
<td>-0.167</td>
<td>0.133</td>
</tr>
<tr>
<td>h1_18 BY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h1_18</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>h2_18</td>
<td>0.563</td>
<td>0.168</td>
<td>0.000</td>
<td>0.293</td>
<td>0.951</td>
</tr>
<tr>
<td>h3_18</td>
<td>0.572</td>
<td>0.153</td>
<td>0.000</td>
<td>0.316</td>
<td>0.919</td>
</tr>
<tr>
<td>g1_18</td>
<td>0.002</td>
<td>0.083</td>
<td>0.492</td>
<td>-0.158</td>
<td>0.168</td>
</tr>
<tr>
<td>g2_18</td>
<td>0.004</td>
<td>0.077</td>
<td>0.477</td>
<td>-0.156</td>
<td>0.151</td>
</tr>
</tbody>
</table>

STDYX Standardization

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h1_18 WITH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>group_18</td>
<td>0.404</td>
<td>0.118</td>
<td>0.002</td>
<td>0.145</td>
<td>0.605</td>
</tr>
</tbody>
</table>
Illustration
Cross-loadings: Posterior distribution of cross-loading for item “h2_18”
1 Bayesian SEM
 - Measurement invariance
 - Cross-loadings

2 Illustration
 - Substantive question
 - Data
 - Results I: cross-loadings
 - Results II: measurement invariance
 - Results III: final model
Figure 3: LGMs for *hedo* and *group*
Table 2: Univariate LGM assessment with scalar MI (n=357)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Prior (λ_{diff})</th>
<th>BIC</th>
<th>DIC</th>
<th>PPP</th>
<th>BIC</th>
<th>DIC</th>
<th>PPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>\simN(0, 0.000)</td>
<td>12262</td>
<td>12092</td>
<td>0.010</td>
<td>6057</td>
<td>5934</td>
<td>0.381</td>
</tr>
<tr>
<td>Appr.</td>
<td>\simN(0, 0.001)</td>
<td>12337</td>
<td>12073</td>
<td>0.183</td>
<td>6121</td>
<td>5933</td>
<td>0.458</td>
</tr>
<tr>
<td></td>
<td>\simN(0, 0.010)</td>
<td>12331</td>
<td>12072</td>
<td>0.252</td>
<td>6117</td>
<td>5933</td>
<td>0.543</td>
</tr>
<tr>
<td></td>
<td>\simN(0, 0.050)</td>
<td>12329</td>
<td>12070</td>
<td>0.263</td>
<td>6116</td>
<td>5930</td>
<td>0.545</td>
</tr>
<tr>
<td>Partial</td>
<td>\simN(0, 0.000)</td>
<td>12251</td>
<td>12078</td>
<td>0.071</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: BIC = Bayesian information criterion; DIC = deviance information criterion; PPP = posterior predictive p-value.
<table>
<thead>
<tr>
<th></th>
<th>Posterior Estimate</th>
<th>One-Tailed P-Value</th>
<th>95% C.I. Lower 2.5%</th>
<th>95% C.I. Upper 2.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>h1_14 by hedo_14</td>
<td>1.000</td>
<td>0.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>h2_14</td>
<td>0.694</td>
<td>0.089</td>
<td>0.531</td>
<td>0.882</td>
</tr>
<tr>
<td>h3_14</td>
<td>0.759</td>
<td>0.099</td>
<td>0.578</td>
<td>0.969</td>
</tr>
<tr>
<td>h1_16 by hedo_16</td>
<td>0.970</td>
<td>0.042</td>
<td>0.890</td>
<td>1.054</td>
</tr>
<tr>
<td>h2_16</td>
<td>0.745</td>
<td>0.091</td>
<td>0.578</td>
<td>0.935</td>
</tr>
<tr>
<td>h3_16</td>
<td>0.789</td>
<td>0.100</td>
<td>0.608</td>
<td>1.001</td>
</tr>
<tr>
<td>h1_18 by hedo_18</td>
<td>0.953</td>
<td>0.052</td>
<td>0.855</td>
<td>1.057</td>
</tr>
<tr>
<td>h2_18</td>
<td>0.709</td>
<td>0.096</td>
<td>0.535</td>
<td>0.912</td>
</tr>
<tr>
<td>h3_18</td>
<td>0.788</td>
<td>0.106</td>
<td>0.596</td>
<td>1.012</td>
</tr>
<tr>
<td>h1_20 by hedo_20</td>
<td>0.922</td>
<td>0.065</td>
<td>0.801</td>
<td>1.056</td>
</tr>
<tr>
<td>h2_20</td>
<td>0.702</td>
<td>0.101</td>
<td>0.517</td>
<td>0.917</td>
</tr>
<tr>
<td>h3_20</td>
<td>0.829</td>
<td>0.112</td>
<td>0.625</td>
<td>1.066</td>
</tr>
</tbody>
</table>
Hedonism: univariate LGM factor loadings with \(\sim \mathcal{N}(0, 0.050) \)

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Posterior S.D.</th>
<th>One-Tailed P-Value</th>
<th>95% C.I. Lower 2.5%</th>
<th>Upper 2.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>hedo_14 BY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h1_14</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>h2_14</td>
<td>0.706</td>
<td>0.097</td>
<td>0.000</td>
<td>0.530</td>
<td>0.910</td>
</tr>
<tr>
<td>h3_14</td>
<td>0.773</td>
<td>0.107</td>
<td>0.000</td>
<td>0.581</td>
<td>0.999</td>
</tr>
<tr>
<td>hedo_16 BY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h1_16</td>
<td>0.939</td>
<td>0.082</td>
<td>0.000</td>
<td>0.777</td>
<td>1.101</td>
</tr>
<tr>
<td>h2_16</td>
<td>0.746</td>
<td>0.102</td>
<td>0.000</td>
<td>0.560</td>
<td>0.960</td>
</tr>
<tr>
<td>h3_16</td>
<td>0.780</td>
<td>0.110</td>
<td>0.000</td>
<td>0.581</td>
<td>1.014</td>
</tr>
<tr>
<td>hedo_18 BY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h1_18</td>
<td>0.962</td>
<td>0.110</td>
<td>0.000</td>
<td>0.742</td>
<td>1.173</td>
</tr>
<tr>
<td>h2_18</td>
<td>0.680</td>
<td>0.119</td>
<td>0.000</td>
<td>0.465</td>
<td>0.929</td>
</tr>
<tr>
<td>h3_18</td>
<td>0.770</td>
<td>0.133</td>
<td>0.000</td>
<td>0.529</td>
<td>1.049</td>
</tr>
<tr>
<td>hedo_20 BY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h1_20</td>
<td>0.868</td>
<td>0.138</td>
<td>0.000</td>
<td>0.602</td>
<td>1.138</td>
</tr>
<tr>
<td>h2_20</td>
<td>0.663</td>
<td>0.137</td>
<td>0.000</td>
<td>0.416</td>
<td>0.954</td>
</tr>
<tr>
<td>h3_20</td>
<td>0.798</td>
<td>0.156</td>
<td>0.000</td>
<td>0.511</td>
<td>1.119</td>
</tr>
</tbody>
</table>
1 Bayesian SEM
- Measurement invariance
- Cross-loadings

2 Illustration
- Substantive question
- Data
- Results I: cross-loadings
- Results II: measurement invariance
- Results III: final model
Figure 4: Multivariate LGM with cross-loadings
Table 3: Multivariate LGM assessment with scalar MI ($n=357$)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Prior ($\lambda_{\text{diff}} / \tau_{\text{diff}}$)</th>
<th>Prior (CLs)</th>
<th>BIC</th>
<th>DIC</th>
<th>PPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact MI w/o CLs</td>
<td>$\sim N(0,0.000)$</td>
<td>$\sim N(0,0.000)$</td>
<td>18232</td>
<td>17971</td>
<td>0.000</td>
</tr>
<tr>
<td>Exact MI w/ CLs</td>
<td>$\sim N(0,0.010)$</td>
<td>$\sim N(0,0.010)$</td>
<td>18267</td>
<td>17918</td>
<td>0.171</td>
</tr>
<tr>
<td>Appr. MI w/o CLs</td>
<td>$\sim N(0,0.010)$</td>
<td>$\sim N(0,0.000)$</td>
<td>18414</td>
<td>17954</td>
<td>0.025</td>
</tr>
<tr>
<td>Appr. MI w/ CLs</td>
<td>$\sim N(0,0.010)$</td>
<td>$\sim N(0,0.010)$</td>
<td>18479</td>
<td>17919</td>
<td>0.372</td>
</tr>
</tbody>
</table>

Note: BIC = Bayesian information criterion; DIC = deviance information criterion; PPP = posterior predictive p-value.
Multivariate LGM: Estimates

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>S.D.</th>
<th>P-Value</th>
<th>Lower 2.5%</th>
<th>Upper 2.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Means</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_HE</td>
<td>2.967</td>
<td>0.124</td>
<td>0.000</td>
<td>2.724</td>
<td>3.211</td>
</tr>
<tr>
<td>S_HE</td>
<td>-0.118</td>
<td>0.073</td>
<td>0.059</td>
<td>-0.253</td>
<td>0.032</td>
</tr>
<tr>
<td>I_GR</td>
<td>1.541</td>
<td>0.190</td>
<td>0.000</td>
<td>1.173</td>
<td>1.917</td>
</tr>
<tr>
<td>S_GR</td>
<td>-0.091</td>
<td>0.094</td>
<td>0.164</td>
<td>-0.275</td>
<td>0.100</td>
</tr>
</tbody>
</table>

STDYX Standardization

- **I_HE WITH I_GR**: 0.580
- **S_HE WITH S_GR**: 0.463
Illustration

Multivariate LGM: Estimates

Means

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>S.D.</th>
<th>P-Value</th>
<th>Lower 2.5%</th>
<th>Upper 2.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_HE</td>
<td>2.967</td>
<td>0.124</td>
<td>0.000</td>
<td>2.724</td>
<td>3.211</td>
</tr>
<tr>
<td>S_HE</td>
<td>-0.118</td>
<td>0.073</td>
<td>0.059</td>
<td>-0.253</td>
<td>0.032</td>
</tr>
<tr>
<td>I_GR</td>
<td>1.541</td>
<td>0.190</td>
<td>0.000</td>
<td>1.173</td>
<td>1.917</td>
</tr>
<tr>
<td>S_GR</td>
<td>-0.091</td>
<td>0.094</td>
<td>0.164</td>
<td>-0.275</td>
<td>0.100</td>
</tr>
</tbody>
</table>

STDYX Standardization

- **I_HE WITH I_GR**
 - Estimate: 0.580
 - S.D.: 0.142
 - P-Value: 0.000
 - Lower 2.5%: 0.284
 - Upper 2.5%: 0.833
 - (ML = 0.778)

- **S_HE WITH S_GR**
 - Estimate: 0.463
 - S.D.: 0.194
 - P-Value: 0.010
 - Lower 2.5%: 0.071
 - Upper 2.5%: 0.828
 - (ML = 0.680)
BSEM useful
but...
- Prior choice may be an obstacle
- Compromise between fit and precision
- Giving up parsimony vs. using prior assumptions
Appendix
Multivariate LGM: Posterior distribution of intercept mean (hedonism)
Appendix
Multivariate LGM: Posterior distribution of slope mean (hedonism)

[Graph showing the posterior distribution of a slope mean with various statistics indicated, including mean, median, mode, and confidence intervals.]

Seddig, Daniel (UZH)
Approximate MI and zero CLs
07.04.2016, Zurich
Appendix
Multivariate LGM: Posterior distribution of intercept mean (peer group)
Appendix
Multivariate LGM: Posterior distribution of slope mean (group)
Appendix
Multivariate LGM: Posterior distribution of intercept correlation

Seddig, Daniel (UZH) Approximate MI and zero CLs 07.04.2016, Zurich
Appendix

Multivariate LGM: Posterior distribution of slope correlation
Analysis:
Estimator = Bayes;
Chains = 2;
Proc = 2;
Biterations = 1000000(200000);
Bseed = 3010;
Figure 5: Potential scale reduction factor (PSR) plot
Model:

```
gr14 by bc0054@1 bc0056 (a12) !marker item "g1" lambda bl0054 bl0069 bl0076 (cl1-cl3); !cross-loadings [bc0054@0]; !marker item "g1" tau [bc0056] (b12);

gr16 by dc0054* dc0056* (a21-a22) dl0054* dl0069* dl0076* (cl4-cl6); !cross-loadings [dc0054 dc0056] (b21-b22);

gr18 by fc0054* fc0056* (a31-a32) fl0054* fl0069* fl0076* (cl7-cl9); !cross-loadings [fc0054 fc0056] (b31-b32);

gr20 by hc0054* hc0056* (a41-a42) hl0054* hl0069* hl0076* (cl10-cl12); !cross-loadings [hc0054 hc0056] (b41-b42);
```
he14 by b10054@1 b10069 b10076 (c12-c13)
bc0054 bc0056 (c13-c14);
[b10054@0];
[b10069 b10076] (d12-d13);

he16 by d10054* d10069* d10076* (c21-c23)
dc0054* dc0056* (c15-c16);
[d10054 d10069 d10076] (d21-d23);

he18 by f10054* f10069* f10076* (c31-c33)
fc0054* fc0056* (c17-c18);
[f10054 f10069 f10076] (d31-d33);

he20 by h10054* h10069* h10076* (c41-c43)
hc0054* hc0056* (c19-c20);
[h10054 h10069 h10076] (d41-d43);

i_gr s_gr | gr14@0 gr16@1 gr18@2 gr20@3;
[i_gr s_gr];
i_he s_he | he14@0 he16@1 he18@2 he20@3;
[i_he s_he];
Appendix

Mplus Input: approximate MI

Model priors:
 Do (2,2) diff (a1#-a4#) ~ N(0,0.01); !"do diff" for lambda -differences
 Do (2,2) diff (b1#-b4#) ~ N(0,0.01); !"do diff" for tau-differences

 a21 ~ N(1,0.01); ! priors for marker item "g1" lambda
 a31 ~ N(1,0.01);
 a41 ~ N(1,0.01);

 b21 ~ N(0,0.01); ! priors for marker item "g1" tau
 b31 ~ N(0,0.01);
 b41 ~ N(0,0.01);

 Do (2,3) diff (c1#-c4#) ~ N(0,0.01);
 Do (2,3) diff (d1#-d4#) ~ N(0,0.01);

 c21 ~ N(1,0.01);
 c31 ~ N(1,0.01);
 c41 ~ N(1,0.01);

 d21 ~ N(0,0.01);
 d31 ~ N(0,0.01);
 d41 ~ N(0,0.01);
Appendix

Mplus Input: approximate MI

Model constraint:

```
NEW(a11 ave1 diff1_1-diff1_4);  ! calculation of differences between
a11=1;
ave1=(a11+a21+a31+a41)/4;
Do(1,4) diff1_#=a#1-ave1;

NEW(b11 ave2 diff2_1-diff2_4);  ! calculation of differences between
b11=0;
ave2=(b11+b21+b31+b41)/4;
Do(1,4) diff2_#=b#1-ave2;

NEW(c11 ave3 diff3_1-diff3_4);  ! calculation of differences between
c11=1;
ave3=(c11+c21+c31+c41)/4;
Do(1,4) diff3_#=c#1-ave3;

NEW(d11 ave4 diff4_1-diff4_4);  ! calculation of differences between
d11=0;
ave4=(d11+d21+d31+d41)/4;
Do(1,4) diff4_#=d#1-ave4;
```