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Preface

This book introduces R in the context of the angewandte Methoden der Politik-
wissenschaft. The objective is to turn you into a comfortable R user, someone
who is able to perform basic data manipulation and who can obtain basic graphs,
tables, descriptive statistics, and who can perform basic hypothesis tests. Based
on this foundation, you can then develop expert R skills.

By now, R is one of the most widely used statistical programming platforms
in political science. There are several reasons for this. Most important perhaps
is R’s versatility. There is very little that R cannot do and cutting edge de-
velopments in statistical methodology are often first introduced in R. This has
a major advantage: R is probably the only statistical program that you will
ever have to learn. A second major benefit of R is that it produces amazing
graphics, better than any other statistical package. Third, all of these benefits
are available for all of the major operating systems and they are available for
free!

This may all sound to good to be true—there has to be a catch. Well, there
sort of is. R is not an easy program to master. The learning curve is steep and
there will be times that you will frankly be quite frustrated with the program,
wondering what sin you committed that you have been condemned to learning
R. This is where the present work book comes into play. In this book, we try to
give you a sense of the architecture of R. What is more, we also provide you with
recipes for tackling common tasks such as reading and saving data, recoding old
variables, and creating new ones. Our sincere hope is that this information will
take some of the frustration out of learning R. Once you master the basic tricks,
we are convinced that you will find R to be quite wonderful, albeit perhaps not
to the extent that us method geeks enjoy the program.

The work book is organized as follows. Each chapter starts off with a worked
example illustrating how to perform a particular task in R. You can read this
example ahead of the exercise session and, if you want, you can even replicate
the example by running the code yourself. Indeed, this is the recommended
strategy for preparing yourself for the exercise sessions. The worked example is
followed by a new set of problems, which are similar in nature but require that
you write your own code. The worked examples serve as a template for these
new problems, but you will have to make adjustments to answer the questions.
The workbook does not walk through the new problem sets but the lab sessions
will review the solutions.

v



vi PREFACE

We hope that this work book will proof to be helpful with learning R. Al-
though R requires quite an investment of time initially, the benefits you will
reap more than compensate for this. Moreover, with the help of this book, the
investment will hopefully be smaller. Hence, we wish you all much pleasure with
mastering R.

Zurich, August 2015
Marco R. Steenbergen
Kushtrim Veseli
Benjamin Schlegel
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Chapter 1

The R-chitecture

The statistical program R has been around since 1993. In some ways, however,
the program’s roots go back to 1976, when its precursor S was developed at
Bell Labs in the United States. Behind the power of R stands a core team
of developers. In addition, however, users have contributed numerous add-ons
in the form of so-called libraries. There also is an improved graphical user
interface (GUI), called Rstudio, which sits on top off R and greatly simplifies
programming in the R language. The latest versions even includes an auto-
complete of R syntax.

1.1 Finding and Installing the Software

The R software can be found on the web site of the Comprehensive R Network
Archive, or CRAN for short, which also is the repository of most of the user
written libraries. The software is available for OSX (Mac), Unix, as well as
Windows. Just find the version that is right for your operating system and
follow the installation instructions.

Rstudio is a GUI for working with R. It can be downloaded—again for free
and for all major operating systems—at www.rstudio.org. There are two ver-
sions, one for commercial use and one for individual use, and you should pick
the latter, as this is the free version. Find the version that is right for your
operating system and follow the installation instructions. Important: Install
Rstudio only after you have installed R.

1.2 The Rstudio Environment

When you open Rstudio for the first time, you will notice that there are three
windows (see Figure 1.1). The largest window appears on the left and is called
the console. This is where you can write syntax and where the results—as well
as the occasional error message—will be displayed. On the top right, you will
find a window with two tabs: Environment and History. The Environment tab

3
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Figure 1.1: The Rstudio Environment

Note: When you first open Rstudio, the desktop is divided into three sections: (1) the console
on the left; (2) the Environment/History window on the top right; and (3) miscellaneous
windows, including Help, on the bottom right.

shows all of the objects that are available to you (more on that below). The
History tab shows the commands that you have issued. It is useful because
it allows you to copy-paste commands and thus eliminates the need to re-type
them. The final window appears at the bottom right and has multiple tabs:
Files, Plots, Packages, Help, and Viewer. Files, as the name implies, shows all
of the files in the current directory. Plots will not show anything when you start.
However, any plots that you generate can be found here. The same is true for
the Viewer tab, which becomes relevant if you are interested in accessing local
web content. Packages is a tab that we will be using frequently. This is where
you install, update, and activate libraries. It is so important that we dedicate
an entire section to this tab. Finally, the Help tab provides help, as the name
suggests. One of the very nice aspects of Rstudio is that it is much easier to get
access to the help files than in R itself. If you are ever uncertain what command
to use or how to use it, then the Help tab is your best friend.

1.3 R—The Expandable Language

Most R users describe the program as a programming language rather than a
statistical package. A statistical package performs a limited set of tasks but R
is much more versatile than that. It can be used to produce documents such as
this book, HTML code, animations and much more. It can be parallelized to
speed up computations. And it interfaces with other programming languages
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such as C++.

Much of this added functionality comes from user-written programs, which R
calls libraries or, alternatively, packages. Libraries are collections of commands,
sometimes tightly connect to a particular methodology and sometimes more
versatile (e.g., a set of utilities). There are two things you need to know about
libraries. First, when you install R it comes with a very limited number of
libraries. Second, when you start up R or Rstudio, then only a very limited
number of libraries will be active. This means that you will have to activate
most libraries if you want to use them.

1.3.1 Installing Libraries

All of the libraries that we shall need in angewandte Methoden can be found
on CRAN. By far the easiest way of installing these packages is to utilize the
Packages tab in Rstudio. When you open this tab, you will notice two options:
Install and Update. Update is for libraries that you have already installed and
is useful for updating them. Install is for adding new libraries. If you click on
the install option, a new window appears (see Figure 2). By default, Rstudio
will search for libraries on CRAN. The only information you need to enter is
the name of he library you want to install. It is usually quite easy to find this
out via a search on the Internet and, in any case, we will provide the names
of all of the packages that you will need. Important is to make sure that the
box titled “install dependencies” is checked. Many libraries themselves rely on
other libraries, which may not yet be in your system library. By clicking the
box, you ensure that these libraries are also installed so that everything will run
smoothly. When you now click on Install, you’ll see some activity in the console
indicating that the libraries are being installed.

1.3.2 Activating Libraries

There are several ways in which an R library can be activated. One way is to go
into the Packages tab and click the box next to the package name. Alternatively,
you could type library or require to activate the package. As an example
consider the following two commands:

library(foreign)

require(foreign)

Both of these options activate the foreign library, which allows you to read
in data in a non-native format such as .csv. Whereas installation is forever—
you only need to install a library once—activation is ephemeral. It applies only
to the current session and once you exit R or Rstudio, you will have to activate
the library again.
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1.3.3 Deactivating Libraries

Occasionally, you will find that different libraries do not play together well. This
happens, for example, when a library calls on an earlier version of another li-
brary, while you have loaded a more recent version of that library. You can often
tell there is a problem because you get a warning or the library of interest fails
to produce results. Normally, libraries are unloaded only after you exit R. To
unload them without interrupting the R session, you can use the detach func-
tion. For example, to detach the foreign library, we could issue the command

detach("package:foreign", unload = TRUE)

This will deactivate the foreign library, should that interfere with the normal
functioning of another library.

1.3.4 Maintaining Libraries

Libraries are updated continuously. It is good practice to check for updates
regularly, say once a month. It is easy to do this in RStudio. Just go to the
Packages tab and click on Update. This will guide you through a simple process
for updating your libraries.

1.4 R—The Object-Oriented Language

R is an object-oriented language. This means that you create objects. These
can be data, matrices and arrays, results from functions, or objects created by
commands. All of the objects are visible in the Environment tab in Rstudio.
At any point in time, you may have just one or dozens of objects available to
you. This is a major difference compared to other statistical programs, which
usually allow only for one object, to wit the data.

As an example, consider a simple computation: 2 + 3. We could enter this
as

2 + 3

## [1] 5

In this case, we obtain the result directly in the console window. However, we
could also type the following:

x <- 2 + 3

Now no result is shown. Instead, the result is stored in the object x, which now
appears in the Environment tab, ready for future use. The arrow assigns 2 plus
3 to the object x. Alternatively, we might also have typed
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x = 2 + 3

although this work book will rely mostly on arrows, since these can be used
under a wide variety of conditions.

The great benefit of creating objects is that we can store the results from
statistical procedures and functions for future use. We shall be doing this a
great deal in this book. Future use here can also mean taking the results and
turning them into beautiful tables that you can use in papers that you may be
writing.

As so often, the flexibility that R offers also brings with it some complica-
tions. Imagine that we have two data sets, bogus1 and bogus2, each containing
the variable age. If I now ask R to compute the median age, then it does not
know where to look. In most statistical programs, this problem would not hap-
pen because there is only one data set that is loaded into memory. We can
overcome the problem in several ways. For example, we can type

median(bogus1$age)

## [1] 50

if our interest is in the median age in the first data set. The bit that comes
prior to the dollar sign declares the data frame; this is an object we shall discuss
in greater detail in the next chapter. The bit that comes after the dollar sign
declares the variable of interest. Now R knows precisely which variable in which
object it should look at. Alternatively, you can use the attach command.

attach(bogus1)

median(age)

## [1] 50

You now see that it suffices to specify the age variable when we wish to compute
the median; it is no longer necessary to also specify the data object. While it
would seem that attach is the simpler option, you should keep in mind that
R will now only perform operations on the attached data object. If you want
to perform operations on a different object, you now have to first detach the
original object:

detach(bogus1)

If you forget to do this, then you may be applying operations to the wrong
object. For this reason, we tend to prefer the first approach.

1.5 Types of Objects

R knows three fundamental types of objects: (1) vectors; (2) lists; and (3)
functions. It is useful to know the distinctions between those objects, so we
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review them briefly.

1.5.1 Vectors

In R, vectors are collections of elements of the same type. The elements may
be characters, they may be logical, or numeric, as long as these types are not
mixed together. Creating vectors is easy and the following are all examples of
the process.

a <- 1

b <- c(7411.3, 1035.3, 5614.6, 6886.3, 2825.3)

c <- c("ZH", "BE", "LU", "UR", "SZ", "OW", "NW", "GL", "ZG",

"FR", "SO", "BS", "BL", "SH", "AR", "AI", "SG", "GR", "AG",

"TG", "TI", "VD", "VS", "NE", "GE", "JU")

On the first line, we create a vector with just one element—mathematicians call
this a scalar—to wit the number 1. On the second line, we create a vector of
five elements, to with the 2013 per capita GDP values in southern Africa. Note
the use of “c,” which stands for concatinate. This operator allows us to enter
multiple elements, together enclosed by parentheses and individually separated
by commas. The final three lines result in a 26-element vector, in this case
of abbreviations of the Swiss cantons. Since these abbreviations are given in
characters, they have to be included in apostrophes. The resulting vector is a
string vector.

In R, matrices and arrays are variants of vectors that have a dim argument
to indicate their dimensionality (e.g., the number of rows and columns). The
following is an example that creates a matrix.

d <- matrix(c(7411.3, 85, 1035.3, 58, 5614.6, 77, 6886.3, 67,

3825.3, 98), nrow = 5, byrow = TRUE)

d

## [,1] [,2]

## [1,] 7411.3 85

## [2,] 1035.3 58

## [3,] 5614.6 77

## [4,] 6886.3 67

## [5,] 3825.3 98

The matrix command generates the matrix. It declares the elements (using
concatinate) as well as the dimensionality (the nrow option tells us that there
are to be 5 rows and the byrow = TRUE option that the elements are to be
organized by row). The last line causes R to show the matrix, which we have
called d. This matrix contains the 2013 per capita GDP values, as well as a
measure of political stability. In the next example, we create an array using the
same information but for two years: 2008 and 2013.
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e <- array(c(5660.1, 826.8, 4008.9, 5811.6, 2617, 81, 36, 93,

46, 95, 7411.3, 1035.3, 5614.6, 6886.3, 2825.3, 85, 58, 77,

67, 98), dim = c(5, 2, 2))

e

## , , 1

##

## [,1] [,2]

## [1,] 5660.1 81

## [2,] 826.8 36

## [3,] 4008.9 93

## [4,] 5811.6 46

## [5,] 2617.0 95

##

## , , 2

##

## [,1] [,2]

## [1,] 7411.3 85

## [2,] 1035.3 58

## [3,] 5614.6 77

## [4,] 6886.3 67

## [5,] 2825.3 98

This array has 5 rows, 2 columns, and 2 slices. The rows indicate countries,
whereas the columns capture the two variables (per capita GDP and stability),
and each slice reflects a particular time period (2008 or 2013). For example, the
5th country (Swaziland) scored 95 on stability in 2008 and 98 in 2013.

1.5.2 Lists

A list is a collection of elements that may be of different types. Many statistical
procedures in R produce results that are lists. It is also not that difficult to
create a list yourself, as the following example shows.

album <- list(title = "Kind of Blue", year = 1959, genre = "Jazz",

musicians = c("Miles Davis", "Julian Adderley", "John Coltrane",

"Bill Evans", "Wynton Kelly", "Paul Chambers", "Jimmy Cobb"),

songs = c("So What", "Freddie Freeloader", "Blue in Green",

"All Blues", "Flamenco Sketches"))

album

## $title

## [1] "Kind of Blue"

##

## $year

## [1] 1959
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##

## $genre

## [1] "Jazz"

##

## $musicians

## [1] "Miles Davis" "Julian Adderley" "John Coltrane"

## [4] "Bill Evans" "Wynton Kelly" "Paul Chambers"

## [7] "Jimmy Cobb"

##

## $songs

## [1] "So What" "Freddie Freeloader"

## [3] "Blue in Green" "All Blues"

## [5] "Flamenco Sketches"

You see that the list album contains several items: the title, the year it was
released, the genre, etc.

One of the most important lists in R is the so-called data frame. A data
frame is a list consisting of vectors that may be of different types (numeric
and string, for example) but are all of the same length. It is the primary
representation of data in R. Because it is so important, we dedicate the entire
next chapter to data frames.

1.5.3 Functions

Functions constitute the third type of object in R, and are of great importance
when using the program. Through the use of functions, we can manipulate
data and generate statistical estimates. At a minimum, functions contain two
kinds of elements. The first are the arguments to which the function should
be applied. The second are the instructions concerning the computations that
have to be performed with the arguments. Let us consider a simple example:

f1 <- function(x) {
1/x

}

This function has only one argument, to wit x, and its instruction is simply to
take the reciprocal of this argument. To apply the function, we type f1 and
declare a particular value of x in parentheses. For example,

f1(2)

## [1] 0.5

f1(0)

## [1] Inf
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In the second example, we try to take the inverse of 0, which is positive infinity
or, in R’s notation, Inf.

Functions can have multiple arguments. As an example consider the follow-
ing function, which contains three arguments.

hdi <- function(lei, ei, ii) {
(lei * ei * ii)^(1/3)

}
hdi(0.963, 0.844, 0.95)

## [1] 0.9174114

This is the function for the human development index (HDI), which is a geo-
metric mean, as we shall see later. The arguments are the life expectancy index
(lei), the education index (ei), and the income index (ii). In the application of
the function, we have used the 2013 values of the arguments for Switzerland.

We can also specify multiple computational instructions in a single com-
mand. In the following example, we use the raw data for the human develop-
ment index, which consist of: (1) life expectancy at birth (life); (2) mean years
of schooling (educ1); (3) expected years of schooling (educ2); and (4) Gross
National Income per capita (gni).1 The function computes the life expectancy,
education, and income indices, as well as the HDI. The sample data are again
taken from Switzerland in 2013.

hdi2 <- function(life, educ1, educ2, gni) {
z1 <- (life - 20)/65

z2 <- 0.5 * ((educ1/15) + (educ2/18))

z3 <- (log(gni) - log(100))/(log(75000) - log(100))

z4 <- (z1 * z2 * z3)^(1/3)

return(z4)

}
hdi2(82.6, 12.2, 15.7, 53762)

## [1] 0.9168995

The return argument controls which computations are actually shown. In this
case, we have asked only for the final index to be displayed. However, we could
easily display all of the intermediate results as well.

hdi2 <- function(life, educ1, educ2, gni) {
z1 <- (life - 20)/65

z2 <- 0.5 * ((educ1/15) + (educ2/18))

z3 <- (log(gni) - log(100))/(log(75000) - log(100))

z4 <- (z1 * z2 * z3)^(1/3)

1The formulas for the various components can be found on the website of the United
Nations Development Programme.

http://hdr.undp.org/en/content/human-development-index-hdi
http://hdr.undp.org/en/content/human-development-index-hdi
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return(c(z1, z2, z3, z4))

}
hdi2(82.6, 12.2, 15.7, 53762)

## [1] 0.9630769 0.8427778 0.9497103 0.9168995

The whole set of results is returned as a vector, with the elements correspond-
ing to the life expectancy, education, income, and human development indices,
respectively. We can clarify the output by turning it into an annotated list.

hdi2 <- function(life, educ1, educ2, gni) {
z1 <- (life - 20)/65

z2 <- 0.5 * ((educ1/15) + (educ2/18))

z3 <- (log(gni) - log(100))/(log(75000) - log(100))

z4 <- (z1 * z2 * z3)^(1/3)

list(LEI = z1, EI = z2, II = z3, HDI = z4)

}
hdi2(82.6, 12.2, 15.7, 53762)

## $LEI

## [1] 0.9630769

##

## $EI

## [1] 0.8427778

##

## $II

## [1] 0.9497103

##

## $HDI

## [1] 0.9168995

1.6 Saving Output

By default, R outputs all of the results to the screen. To obtain a permanent
record of the results, one can proceed in two different ways. First, one can just
copy-paste the results into a text editor and save them from there. Second,
one can use R’s sink command. Although the command has various advanced
options, it usually suffices to decide on two parameters: the name of the output
file and whether results should be appended or not. Imagine that we run one
analysis that we wish to sink and then another one that we also wish to sink.
If we provide the same output file name and set append = FALSE, then the
first analysis will be overwritten by the second one. If we set append = TRUE,
however, then the second analysis will be appended to the first one. You should
open sink before you execute the command that you want to save. For example,
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sink("example", append = TRUE)

1 + 2

## [1] 3

sink()

sinks the addition 1 plus 2 to the file example in the working directory. The last
statement—sink()—stops the sinking process, so that subsequent operations
will not be saved to a file.

1.7 Getting Help

R offers extensive help when you are uncertain about the syntax. In RStudio the
help files can be searched by using the “Help” tab in the window on the lower
right. If this help does not suffice, then there are several excellent web sites
that you can consult. We particularly like Cookbook for R, UCLA’s Institute
for Digital Research and Education R site, and Quick-R: Accessing the Power
of R. If that is still not enough, you should try consulting the “Use R!” book
series from Springer.

1.8 Conclusion

In this chapter, we have introduced the basic architecture of R, focusing on the
object-oriented and expandable nature of the program. The basic R objects
were introduced, to wit vectors, lists, and functions. The interplay of these
objects is a key aspect of the R programming environment and is one of the
reasons it is so flexible. In the next chapter, we shall focus extensively on one
type of list object—the data frame. Before doing so, however, you should try
to work through the exercises from this chapter.

1.9 Exercises

(1) Install and activate the moments library, which we shall be using in the
chapter on summary statistics.

(2) Table 1 contains the percentage of voter turnout in the ten largest cities
in Switzerland. First create a vector of city names. Then create a vector of
turnout rates.

(3) Generate a function that takes the input x and then computes x2/(2−x).
(Note that the caret symbol means “raise to the power of“ whatever follows it.)

cookbook-r.com
http://www.statmethods.net
http://www.statmethods.net
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Table 1.1: Turnout in the Largest Swiss Cities in 2011

City Turnout City Turnout
Zurich 46.0 Winterthur 47.8
Geneva 42.5 Lucerne 48.2
Basel 50.6 St. Gallen 46.6
Lausanne 40.3 Lugano 50.9
Bern 55.6 Biel 39.0

Note: Data from the Swiss Federal Statistical
Office. Turnout in percent of eligible voters.

(4) A person’s body mass index or BMI can be computed through the follow-
ing formula:

BMI =
Masskg

Height2m

Write a function in R that takes the measures of mass in kilogram and height
in meters as its arguments and returns the BMI. Then apply the function to a
person who weighs 110 kilogram and is 2 meters tall. What result do you get?

(5) Building on question (4), there are some countries that measure weight in
lbs and height in inches. The conversion is

1lb 0.453592kg
1in 0.0254m

Expand the function of (4) so that it converts pounds to kilograms and inches
to meters, before it computes the BMI. The function should output a list of
the kilograms, meters, and BMI. It should take height in inches and weight in
pounds as its arguments. Then apply the function to someone who is 66.93
inches tall and weighs 264.56 pounds. What results do you get for the height in
meters, weight in kilograms, and the BMI?



Chapter 2

Data Frames

Data are the most important ingredient for a statistical analysis. In R, the data
can come in the form of lists, vectors, matrices, and arrays. The most common
format, however, is that of a data frame. As objects, data frames are ubiquitous
in R and it is important for you to know how to display, create, and save them.
Those topics are the focus of this chapter.

2.1 Required Packages

For the exercises in this chapter, you will need to install and/or activate the
following libraries:

• foreign to read data from SAS, Stata, and other packages.1

• xlsx to read Excel spreadsheets.

2.2 What Is a Data Frame?

As we discussed in the previous chapter, a data frame is a list consisting of
vectors that may be of different types (numeric and string, for example) but are
all of the same length. Visually, it looks like a spreadsheet. The rows typically
represent (sampling) units, whereas the columns represent variables.

2.3 Displaying the Contents of a Data Frame

In Rstudio, data frames appear in the Environment tab under the rubric “Data.”
If you want to view the data, you can click on the object name. This opens
a new tab in the Console displaying the data in spreadsheet form. The same
effect is obtained by typing the View command. As an example, assume we have

1You should keep in mind that foreign may be compatible only with older versions of
other programs. Check the help facilities to check the compatibility.

15
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Figure 2.1: View of a Data Frame

Note: The figure shows a data frame in spreadsheet form.

read in a set of characteristics of students at the University of Zurich, calling
the object dat1. Then

View(dat1)

## Warning: running command ’’/usr/bin/otool’ -L ’/Library/Frameworks/R.framework/Resources/modules/R de.so’’

had status 69

causes the data to show in spreadsheet form (see Figure 2.1).
There are other ways to view the contents of the data frame. For example,

if we want to display the data for the first 5 observations, we can use the head

command.

head(dat1, n = 5)

## id byear man height weight hf

## 1 7 81 weiblich 177 76 Politikwissenschaften

## 2 19 79 weiblich 162 50 Erziehungswissenschaften

## 3 16 86 weiblich 162 55 Politikwissenschaften

## 4 12 83 weiblich 167 61 Politikwissenschaften

## 5 12 88 weiblich 170 52 Politikwissenschaften

## nf_1 nf_2 nf_3 cigs

## 1 Sozialanthropologie 60

## 2 Soziologie 0

## 3 BWL 0

## 4 V\xf6lkerrecht 70

## 5 Soziologie Medienwissenschaften Geschichte 0

## taken estheight estweight br gruppe smoke

## 1 Beziehung 170 65 7 1 1

## 2 Beziehung 170 70 2 1 0

## 3 keine Beziehung 170 65 7 4 0

## 4 Beziehung 171 75 7 1 1

## 5 keine Beziehung 175 68 7 5 0
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(If we want to see more lines, then we can change n = 5 into some other num-
ber.) If we want to display the last 5 observations, then we issue

tail(dat1, n = 5)

## id byear man height weight hf

## 82 6 85 maennlich 178 85 Politikwissenschaften

## 83 1 86 maennlich 185 78 VWL

## 84 17 86 maennlich 170 69 Politikwissenschaften

## 85 17 84 maennlich 178 70 VWL

## 86 5 78 maennlich 173 75 Geschichte

## nf_1 nf_2 nf_3 cigs taken

## 82 Jus 0 Beziehung

## 83 Politikwissenschaften 0 keine Beziehung

## 84 Jus 50 keine Beziehung

## 85 Politikwissenschaften 1 Beziehung

## 86 Soziologie 0 keine Beziehung

## estheight estweight br gruppe smoke

## 82 181 77 7 5 0

## 83 180 75 7 5 0

## 84 165 75 7 5 1

## 85 168 63 7 1 1

## 86 172 65 7 5 0

If you want to have more control over the contents from the data frame that
are being displayed, then the following command comes in handy:

dat1[1:5, 1:3]

## id byear man

## 1 7 81 weiblich

## 2 19 79 weiblich

## 3 16 86 weiblich

## 4 12 83 weiblich

## 5 12 88 weiblich

This command shows the first 5 rows and first 3 columns of the data frame.
Had we wanted to display the first 10 rows and first 5 columns, then we could
have issued dat1[1:10,1:5].

There is one more, extremely useful command, to wit summary. This com-
mand can be used in many different contexts. However, in the case of data
frames, the command allows us to obtain descriptive statistics of the variables.

summary(dat1)

## id byear man
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## Min. : 1.00 Min. :72.00 weiblich :38

## 1st Qu.: 6.00 1st Qu.:83.00 maennlich:48

## Median :11.00 Median :85.00

## Mean :11.56 Mean :83.81

## 3rd Qu.:16.75 3rd Qu.:86.00

## Max. :26.00 Max. :88.00

##

## height weight hf

## Min. :153.0 Min. : 43.00 Length:86

## 1st Qu.:168.0 1st Qu.: 60.00 Class :character

## Median :173.5 Median : 66.00 Mode :character

## Mean :173.4 Mean : 66.55

## 3rd Qu.:179.8 3rd Qu.: 73.00

## Max. :192.0 Max. :115.00

## NA's :1

## nf_1 nf_2 nf_3

## Length:86 Length:86 Length:86

## Class :character Class :character Class :character

## Mode :character Mode :character Mode :character

##

##

##

##

## cigs taken estheight

## Min. : 0.00 keine Beziehung:47 Min. :163.0

## 1st Qu.: 0.00 Beziehung :39 1st Qu.:170.0

## Median : 0.00 Median :173.5

## Mean : 28.49 Mean :174.0

## 3rd Qu.: 57.50 3rd Qu.:177.8

## Max. :180.00 Max. :185.0

##

## estweight br gruppe

## Min. :55.00 Min. :0.000 Min. :1.000

## 1st Qu.:67.00 1st Qu.:7.000 1st Qu.:2.000

## Median :70.00 Median :7.000 Median :3.500

## Mean :69.69 Mean :6.541 Mean :3.302

## 3rd Qu.:73.00 3rd Qu.:7.000 3rd Qu.:5.000

## Max. :85.00 Max. :7.000 Max. :5.000

## NA's :1 NA's :1

## smoke

## Min. :0.0000

## 1st Qu.:0.0000

## Median :0.0000

## Mean :0.4651

## 3rd Qu.:1.0000
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## Max. :1.0000

##

(Do not worry if these numbers do not make sense yet; we’ll get to that later in
the work book.)

2.4 Variable and Value Types

2.4.1 Types of Variables

In statistics, a common distinction is made between nominal, ordinal, interval,
and ratio variables. In R, the first two types are known as factors, whereas the
latter two types are called numeric.2 It is easy tell what kind of variable you
are dealing with. When you issue the summary command, you will see a listing
of the discrete values of a factor, whereas you will see summary statistics for
numeric values. You can verify this by looking at the example on the previous
page. Another way to check is to issue the following syntax:

is.factor(dat1$hf)

## [1] FALSE

is.numeric(dat1$height)

## [1] TRUE

If the logical operator TRUE is obtained, then it means that the variable is of
the particular type. If the logical operator FALSE shows, then we know that the
variable is not of the type. For example,

is.numeric(dat1$nf_1)

## [1] FALSE

shows that the variable subcontinent is not a numerical variable. What type
a variable determines how it is handled by R, for example what statistics can
be computed.

2.4.2 Types of Values

Frequently, the cells in the spreadsheet contain the value NA. This stands for
“not available.” When collecting data, we may not always be able to obtain
(valid) information for all of the units. When (valid) information is missing, we
need to indicate this to the statistical software we are using. In R, this is done

2A third type are string variables, which are variables made up entirely of alphabetical
characters. Examples are names of people and locations.
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Table 2.1: Economic and Political Indicators for Southern Africa

Per Capita Polity IV
Country GDP Score
Botswana 7411.3 8
Lesotho 1035.3 8
Namibia 5614.6 6
South Africa 6886.3 8
Swaziland 2825.3 -9

Note: Data from the World Bank and
the Center for Systemic Peace. Per
capita GDP is measured in US Dollars
for 2013. The Polity IV score is based
on data from 2010.

by entering NA. When we see this symbol, then we know that there is a missing
value. Missing values cause some real issues in statistics but they are a fact of
life. In the practice of using statistics, you will encounter NA more often than
you may care for. When you see it, then you should be prepared to adjust some
of the statistical commands in R so that they can handle the missing values.
But we are getting ahead of ourselves.

Note that the summary command shows the number of NAs. This information
is useful both to realize whether there are missing values and the extent of them.
In general, it is recommended that you always run the summary command before
engaging in any type of statistical analysis.3

2.5 Generating a Data Frame

2.5.1 Generating a Data Frame from Vectors

Imagine, we have obtained the data shown in Table 2.1. We would like to turn
this data into a data frame. One way to do this, is to create vectors of country
names, per capita GDP, and Polity scores. These can then be merged into a
data frame by binding the columns together. Here goes.

country <- c("Botswana", "Lesotho", "Namibia", "South Africa",

"Swaziland")

gdp <- c(7411.3, 1035.3, 5614.6, 6886.3, 2825.3)

polity <- c(8, 8, 6, 8, -9)

africa <- as.data.frame(cbind(country, gdp, polity))

head(africa, n = 5)

## country gdp polity

## 1 Botswana 7411.3 8

3Some other value types that you may encounter in R are Inf for infinity and NaN, which
stands for “not a number.”
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## 2 Lesotho 1035.3 8

## 3 Namibia 5614.6 6

## 4 South Africa 6886.3 8

## 5 Swaziland 2825.3 -9

We have now created the data frame africa. The cbind command binds the
three vectors together into a matrix with 3 columns. The as.data.frame com-
mand then renders this object into a data frame.

2.5.2 Reading Data from an R Data Object

If the data have already been saved as an R data object, then reading them
is extremely simple. One can recognize R data objects through the extensions
of .Rda or .Rds. In this case, all you need to do is to load the data set. For
example, for the student data

load("studidata.Rds")

will do the job. You do not have to assign a name to the object, since the .Rds

file already contains a label for the data frame, to wit dat1. Note that R will
look for the file in your working directory, which you can set using the setwd

or getwd commands. If the file resides somewhere else, then you will need to
provide a full path or type

load(file.choose())

which opens up a browser for you to select the file.

2.5.3 Reading Data from Files Generated by Other Pro-
grams

Often statistical data are delivered in formats other than .Rda or .Rds. In
political science, for example, it is customary for data sets to be published as
Microsoft Excel files, tab or comma delimited text files, or Stata .dta files.
Reading these files requires the use of the foreign or xlsx libraries.

Let us start with reading Stata files produced with versions 5-12 of the
software.4 To read these files, we proceed as follows.

library(foreign)

dat2 <- read.dta("studidata.dta")

Here, studi.dta is the name of the Stata data file and dat2 is the name of the
data frame that is generated from this file. R reads in the data and assigns NA to

4For later versions, the package haven may be of some help.
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missing values. It also converts those variables with value labels into factors.5

Unfortunately, variable names are lost in the conversion process.

The process of reading a tab or comma delimited text file is very similar.
Such files are typically saved with the extension .csv. They can be read as
follows.

dat3 <- read.csv("studidata.csv", header = TRUE, sep = ",")

Here, studidata.csv is the text file, which is read into the data frame titled
dat3. The option header = TRUE indicates that the first row of the .csv file
contains the variable names. The option sep = "," is used when the character
separating the values of different variables is a comma. If the text file instead
is tab separated, then we would specify sep = " ".

The process of reading an Excel file is a bit different. Now we use the xlsx

library.

library(xlsx)

## Loading required package: rJava

## Loading required package: xlsxjars

dat4 <- read.xlsx("studidata.xlsx", 1L)

The option 1L indicates that we want to read from the first worksheet. If we
want to read from the second work sheet, we would change this to 2L, etc.

2.6 Saving a Data Frame

2.6.1 Saving to an R Format

If you plan on using R as your main statistical programming platform—and
this is what we hope you will decide to do—then it makes a great deal of sense
to safe your data frames in a native R format. It is extremely easy to do so.
Imagine, for example, that you want to safe the data frame named dat2 in a
native R format, then the following lne of syntax will accomplish this task.

save(dat2, file = "studidata.Rda")

(You can also use the extension .Rds.) The file will now be saved to your
working directory. When you load it at a later point in time, then the data
object will be called dat2.

5Should you want to prevent this, then you should issue options(stringsAsFactors =

FALSE) at the beginning of the R session or add the option convert.factors = FALSE.
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2.6.2 Exporting to Another Format

Of course, you can also save your data frame in another format. This might be
useful, for example, if you are working with a colleague who does not know R.
The following syntax accomplishes the job.

# Writing to .csv

write.csv(dat1, file = "test.csv", row.names = FALSE)

# Writing to Excel

write.xlsx(dat1, file = "test.xlsx", row.names = FALSE)

Both commands save the data frame dat1 in a non-native R format in the
working directory. The first command exports the data frame in .csv format,
whereas the second command does it in an Excel format. Note that we have
suppressed the variable names; these will not be saved on the first row. By
changing row.names = FALSE to row.names = TRUE, we can change that. Also
note that if you have a very large data frame, it is better to save it as a .csv

than as an Excel file, since the former takes up less space.

2.7 Conclusion

In this chapter, we have taken a look at data frames. Data frames are the R
objects you will most frequently encounter. We have shown how to generate,
save, and view the contents of a data frame. In the next chapter, we shall show
how you can manipulate the contents of the data frame. Once you know that,
you are in a good position to start doing some real data analysis in R.

2.8 Exercises

(1) The file world indicators.dta is a Stata file that contains economic,
political, and social indicators for countries around the world. Read this file
into a data frame in R.

(2) Now save the data frame in the R native format.

(3) Display the first 3 observations of the world indicators data frame. To
which countries do these observations correspond?

(4) How many missing values are there on the polity variable?

(5) Generate a data frame from the data shown in Table 1.1.
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Chapter 3

Data Manipulation

Data manipulation is the act of transforming and otherwise manipulating data
frames, for example, by creating new variables. There is a frequent need for
data manipulation. For example, we may seek to create a body mass index
from height and weight or a human development index from data about life
expectancy, educational attainment, and income. In this chapter, we consider
some strategies for engaging in data manipulation.

3.1 Required Packages

For the exercises in this chapter, you will need to install and activate the fol-
lowing library:

• car

• dplyr

• tidyr

3.2 Sorting, Selecting, and Sampling Data

Consider the data in world indicators.dta. This is a Stata data file with
economic and political indicators of countries. The first 3 observations on the
first five variables are given by:

library(foreign)

world <- read.dta("world indicators.dta")

world[1:3, 1:5]

## country continent subcontinent pcgdp hdi

## 1 Afghanistan Asia Southern Asia 664.8 0.468

## 2 Albania Europe Southern Europe 4458.1 0.716

## 3 Algeria Africa Northern Africa 5360.7 0.717

25
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The data is organized by country names (in alphabetical order). It also contains
information about the (sub-)continent in which a country is located.

3.2.1 Sorting the Contents of a Data Frame

Imagine that we want to sort the data by continent and subcontinent first and
then by country name. We can accomplish this using the arrange command in
dplyr:

library(dplyr)

##

## Attaching package: ’dplyr’

##

## The following objects are masked from ’package:stats’:

##

## filter, lag

##

## The following objects are masked from ’package:base’:

##

## intersect, setdiff, setequal, union

world2 <- arrange(world, continent, subcontinent, country)

world2[1:3, 1:5]

## country continent subcontinent pcgdp hdi

## 1 Burundi Africa Eastern Africa 267.1 0.389

## 2 Comoros Africa Eastern Africa 841.8 0.488

## 3 Djibouti Africa Eastern Africa 1668.3 0.467

The data frame world2 now contains a sorted copy of world. Since, alpha-
betically speaking, the first continent is Africa and the first sub-continent is
East Africa, this means that the first three observations pertain to Burundi,
Comoros, and Djibouti. By default, the data are sorted in ascending order.
However, if you want the sort to be done in a descending order, this requires
only a small modification of the syntax:

world2 <- arrange(world, continent, subcontinent, desc(country))

world2[1:3, 1:5]

## country continent subcontinent pcgdp hdi

## 1 Zimbabwe Africa Eastern Africa 953.4 0.492

## 2 Zambia Africa Eastern Africa 1844.8 0.561

## 3 Uganda Africa Eastern Africa 657.4 0.484

Now continent and sub-continent are still ordered alphabetically, but the coun-
tries within a sub-continent are listed in the reversed alphabetical order. If we
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want to to reverse alphabetical ordering on the sub-continents, as well, then the
following accomplishes the task:

world2 <- arrange(world, continent, desc(subcontinent), desc(country))

world2[1:3, 1:5]

## country continent subcontinent pcgdp hdi

## 1 Togo Africa Western Africa 636.4 0.473

## 2 Sierra Leone Africa Western Africa 809.0 0.374

## 3 Senegal Africa Western Africa 1046.6 0.485

You see that whichever object is the argument of desc will be ranked in de-
scending order.

3.2.2 Selecting Rows from a Data Frame

In many cases, we do not just want to sort on a variable but actually select on
that variable. Selection means that we create a copy of the data frame that
consists solely of cases that meet some criterion. With the world indicators, for
example, we may wish to retain only the countries of Eastern Asia. This can
be done again using dplyr:

library(dplyr)

world2 <- filter(world, continent == "Asia", subcontinent ==

"Eastern Asia")

world2[1:8, 1:5]

## country continent subcontinent pcgdp hdi

## 1 China Asia Eastern Asia 6991.9 0.719

## 2 Hong Kong Asia Eastern Asia 38364.2 0.891

## 3 Japan Asia Eastern Asia 38633.7 0.890

## 4 Macao Asia Eastern Asia 90600.4 NA

## 5 Mongolia Asia Eastern Asia 4418.8 0.698

## 6 North Korea Asia Eastern Asia NA NA

## 7 South Korea Asia Eastern Asia 25997.9 0.891

## 8 Taiwan Asia Eastern Asia NA NA

Here == is the logical operator “equal to.” You see that world2 now only
contains data from the Eastern Asian sub-continent. This is useful, if we want
to restrict a set of analyses to this sub-continent only.

3.2.3 Selecting Columns from a Data Frame

Just like we can select a subset of cases, we can also select a subset of variables.
That is, we create a subset of variables for all of the sampling units. This can
be done using dplyr’s select command.
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library(dplyr)

world2 <- select(world, country, polstab, goveff, corrupt, law,

regul, voice)

head(world2, n = 3)

## country polstab goveff corrupt law regul voice

## 1 Afghanistan 1 7 2 1 9 13

## 2 Albania 48 44 26 36 57 51

## 3 Algeria 13 32 39 29 11 23

The data frame world2 now retains only the country name and the six gover-
nance indicators collected by the World Bank.

3.2.4 Sampling from a Data Frame

Finally, we can draw samples from data frames. Generally speaking, there is
no need to do this. However, with very large data sets, it may be useful to test
functions and statistical models on a sub-sample, as this will take less computing
time. In R, we can sample a fraction as well as a specified number of cases. To
sample a specific number of cases, the following syntax works well.

library(dplyr)

world2 <- sample_n(world, size = 10)

world2[, 1:3]

## country continent subcontinent

## 140 New Caledonia Oceania Melanasia

## 185 Spain Europe Southern Europe

## 155 Philippines Asia South-Eastern Asia

## 87 Hungary Europe Eastern Europe

## 100 Jordan Asia Western Asia

## 80 Guatemala Americas Central America

## 77 Greenland Americas Northern America

## 205 Turks and Caicos Islands Americas Caribbean

## 99 Jersey Europe Northern Europe

## 15 Bahamas Americas Caribbean

This command samples 10 cases from the data frame world and stores them in
the data frame world2. Note that the original data are still available. This is
the advantage of an object-oriented language that allows for multiple objects.
Also note the structure of the last command. Note that we do not specify
anything before the comma, which tells R that all rows should be listed. We do
specify something after the comma, so that specific columns (1 through 3) will
be listed.1 To sample a fraction, we issue:

1Similarly, if you want to list the first 10 rows but all of the columns, you could write
world2[1:10,].

www.govindicators.org
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world2 <- sample_frac(world, size = 0.05)

world2[, 1:3]

## country continent subcontinent

## 90 Indonesia Asia South-Eastern Asia

## 7 Anguilla Americas Caribbean

## 82 Guinea-Bissau Africa Western Africa

## 26 Bosnia and Herzegovina Europe Southern Europe

## 6 Angola Africa Middle Africa

## 27 Botswana Africa Southern Africa

## 194 Taiwan Asia Eastern Asia

## 32 Burundi Africa Eastern Africa

## 188 Sudan Africa Northern Africa

## 204 Turkmenistan Asia Central Asia

## 113 Liechtenstein Europe Western Europe

This command draws a sample of 5 percent of the rows from the data frame
world.

3.3 Conversions between Variable Types

As we saw in Chapter 2, variables come in two basic varieties in R: numeric and
factor. Occasionally, you may wish to convert a factor to a numeric type or vice
versa. R has built-in commands for accomplishing these tasks.

3.3.1 Converting from Factor to Numeric Type

To convert a factor variable into a numeric type is relatively straightforward.
The data frame world contains an indicator distinguishing between democracies
and non-democracies. This is a factor variable:

is.factor(world$demo)

## [1] TRUE

To create a copy of the variable that is numeric, we issue the following syntax:2

world$n.demo <- as.numeric(world$demo)

is.numeric(world$n.demo)

## [1] TRUE

To see how the variable is coded, let us display its summary statistics:

2We recommend making copies of extant variables that are converted or recoded, so that
the original remains available.
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summary(world$n.demo)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## 1.00 1.00 1.00 1.44 2.00 2.00 61

We see that the lowest value (Min.) is 1 and the highest value (Max.) is 2.
Later, we shall see how one can dummy or 0/1 code the original variable.

3.3.2 Converting from Numeric to Factor Type

If we have relatively few numeric values, then the conversion to factor can
proceed using the factor command. To illustrate the process, let us convert
the newly created numeric democracy variable to a factor:

world$f.demo <- factor(world$n.demo, labels = c("Non-Democratic",

"Democratic"))

summary(world$f.demo)

## Non-Democratic Democratic NA's

## 89 70 61

To ensure this is correct, let us compare the results to the original democracy
variable:

summary(world$demo)

## Non-Democratic Democratic NA's

## 89 70 61

Since the distributions of f.demo and demo are identical, it looks like the con-
version worked. To be absolutely sure, we want to ascertain that the value of
each country is the same for the two variables. This can be achieved using the
following syntax:

world$demo == world$f.demo

## [1] NA TRUE TRUE NA NA TRUE NA NA TRUE TRUE NA

## [12] TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE NA TRUE

## [23] NA TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE

## [34] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE

## [45] TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA

## [56] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA NA TRUE

## [67] TRUE TRUE NA NA TRUE TRUE TRUE TRUE TRUE TRUE NA

## [78] NA NA TRUE TRUE TRUE TRUE NA TRUE NA TRUE NA

## [89] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA

## [100] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE
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## [111] TRUE TRUE NA TRUE NA NA TRUE TRUE TRUE TRUE NA

## [122] TRUE NA NA NA TRUE TRUE TRUE TRUE NA TRUE TRUE

## [133] TRUE TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE

## [144] TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE

## [155] TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE NA NA

## [166] NA NA NA NA NA TRUE TRUE TRUE NA TRUE TRUE

## [177] NA TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE NA

## [188] TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

## [199] TRUE NA TRUE TRUE TRUE TRUE NA NA TRUE TRUE TRUE

## [210] TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE

We see that all levels of the factor variables are identical (TRUE), at least where
the data are not missing (NA).

When there are many values of the numeric variable, then it will be nec-
essary to group the values first. This can be accomplished by using R’s cut

command. We illustrate this using the human development index (HDI). The
United Nations group the HDI into four groups depending: (1) a HDI greater
than .80 (“very high human development”); (2) a HDI greater than .70 (“high
human development”); (3) a HDI greater than .55 (“medium human develop-
ment”); and (4) HDI scores between 0 and .55 (“low human development”). We
can apply this coding scheme using the following syntax:

world$f.hdi <- cut(world$hdi, breaks = c(-Inf, 0.55, 0.7, 0.8,

Inf), right = TRUE, labels = c("Low Dev.", "Medium Dev.",

"High Human Dev.", "Very High Human Dev."))

table(world$f.hdi)

##

## Low Dev. Medium Dev.

## 43 43

## High Human Dev. Very High Human Dev.

## 52 49

The option right = TRUE means that the interval is open on the left and closed
on the right (e.g., (0.70, 0.80]). To reverse this, you should specify right =

FALSE.

3.4 Recoding Variables

By recoding, we mean the acts of combining and reassigning values of a variable.
This is quite difficult to do in R, but fortunately the car library offers a simple
solution. We illustrate the process using the polity variable in the world data
frame. The original variable ranges between -10 and 10, in steps of 1, although
there are some values smaller than -10 to indicate special transitional states of
countries. We want to recode the values -10 through -5 into 1, -4 through 4 into
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2, and 5 through 10 into 3, while all else is coded as NA. The syntax for making
this recode is as follows:

library(car)

world$new.polity <- recode(world$polity,"-10:-5=1;-4:4=2;

5:10=3;else=NA")

table(world$new.polity)

##

## 1 2 3

## 25 35 100

The car library can also be used to recode and convert formats at the same
time. We show the process with the same example as before.

library(car)

world$f.polity <- recode(world$polity,"-10:-5='Low';-4:4='Medium';

5:10='High';else=NA",

as.factor.result=TRUE)

table(world$f.polity)

##

## High Low Medium

## 100 25 35

Similarly, recode can be used to convert factor to numeric variables:

library(car)

world$n.demo <- recode(world$demo, "'Non-Democratic'=0;

'Democratic'=1;else=NA",

as.numeric.result=TRUE)

summary(world$n.demo)

## 0 1 NA's

## 89 70 61

Now we have created a dummy (i.e., 0/1) variable for democracy.

3.5 Creating New Variables

It is frequently necessary to create new numeric variables from existing ones.
A lot of what we need to do this was discussed already under the rubric of
functions in Chapter 1. In essence, the process is extremely simple, although
it can get somewhat more complicated when we want to create variables that
contain group means and other statistics.
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3.5.1 Simple Computations

Let us start with a simple example. The data set world indicators.dta in-
cludes six governance indicators that have been collected by the World Bank:

polstab political stability and absence of violence
goveff government effectiveness
corrupt control of corruption
law rule of law
regul regulatory quality
voice voice and accountability

These indicators are coded such that higher scores indicate better governance.
We would now like to create an index that combines all six indicators. We do
this by summing those indicators and then dividing by 6.

attach(world)

## The following objects are masked by .GlobalEnv:

##

## country, polity

governance <- (1/6) * (polstab + goveff + corrupt + law + regul +

voice)

summary(governance)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## 0.1667 27.6700 48.5000 49.7600 73.6700 98.3300 11

detach(world)

We have now created a new variable governance in the data frame that contains
the desired index. Note that we used the attach command so that we did not
have to reference the data frame using the $ notation.

We can also use dplyr’s mutate command to add new variables. We il-
lustrate this by creating a new variable containing the ranks on the human
development index.

library(dplyr)

world <- mutate(world, hdi.rank = 187 - rank(hdi, na.last = "keep",

ties.method = "average"))

summary(world$hdi.rank)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## 0.0 46.5 92.5 93.0 139.5 186.0 33

world[1:10, c(1, 24)]
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## country hdi.rank

## 1 Afghanistan 168.0

## 2 Albania 94.0

## 3 Algeria 92.5

## 4 American Samoa NA

## 5 Andorra 36.5

## 6 Angola 148.0

## 7 Anguilla NA

## 8 Antigua and Barbuda 60.0

## 9 Argentina 48.0

## 10 Armenia 86.0

We assign the new variable to the same data frame, i.e., world. The rank

command ranks the HDI values from smallest to largest. We have added two
options. First na.last = "keep" means that missing values appear as NA on
the ranked variable. Second, ties.method = "average" is a method for ad-
dressing ties. A tie occurs when two countries have identical HDI scores. The
average method means that the ranks of those two countries will be averaged.
The ranking procedure gives the highest rank to the country with the highest
HDI (Norway). However, we typically want this country to have a rank of 1,
indicating that it is first in HDI. To accomplish this, we subtract the rank from
187, i.e., the number of countries with non-missing values on the HDI. We can
construct this number as follows:

sum(!is.na(world$hdi))

## [1] 187

We summarize the results using the summary command. We also list the 1st
and 24th columns of the data frame for the first 10 rows, so that we can check
the plausibility of the results.3

Finally, let us consider the use of ifelse statements. Imagine that we want
to create two dummy variables, one for democracies (the polity score is at least
8) and one for autocracies (the polity score is at most -8). We can accomplish
this using the cut command that we described earlier. However, we can also
use the ifelse syntax:

world$democracy <- ifelse(world$polity >= 8, 1, 0)

world$autocracy <- ifelse(world$polity <= -8 & world$polity >=

-10, 1, 0)

world[1:20, c(1, 12, 25, 26)]

## country polity democracy autocracy

## 1 Afghanistan -66 0 0

3By using the concatinate function, we can select non-sequential columns from the data
frame.
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## 2 Albania 9 1 0

## 3 Algeria 2 0 0

## 4 American Samoa NA NA NA

## 5 Andorra NA NA NA

## 6 Angola -2 0 0

## 7 Anguilla NA NA NA

## 8 Antigua and Barbuda NA NA NA

## 9 Argentina 8 1 0

## 10 Armenia 5 0 0

## 11 Aruba NA NA NA

## 12 Australia 10 1 0

## 13 Austria 10 1 0

## 14 Azerbaijan -7 0 0

## 15 Bahamas NA NA NA

## 16 Bahrain -8 0 1

## 17 Bangladesh 5 0 0

## 18 Barbados NA NA NA

## 19 Belarus -7 0 0

## 20 Belgium 8 1 0

The first ifelse command assigns the value 1 to the new variable democracy

if polity is greater or equal to 8; everywhere else, a value of 0 is assigned. The
second ifelse command assigns the value 1 to the new variable autocracy if
polity is no smaller than -10 and no larger than -8; everywhere else a value
of 0 is assigned. This means that countries with polity scores below -10 and
between -7 and 7 receive scores of 0 on both dummy variables. Those countries
with a score of NA on polity automatically receive a score of NA on both dummy
variables.

For the creation of new numeric variables, R contains numerous built-in
functions. Commonly used functions include the following:

abs(x) absolute value of x round(x, k) round x to the kth digit
ceiling(x) round up x sqrt(x)

√
x

exp(x) ex a+b a+ b
floor(x) round down x a*b a · b
log(x) ln(x) a/b a

b
log10(x) log(x) x∧a xa

A complete listing of functions can be found at the Mathematics Department
of Montana State University.

3.5.2 Computations Involving Grouping Variables

To conclude the discussion of computing new variables, let us consider group
summaries as variables to a data frame. More specifically, we want to add a
variable measuring the lowest level of the human development index on a sub-
continent. This can be done using dplyr:

http://www.math.montana.edu/Rweb/Rhelp/00Index.html
http://www.math.montana.edu/Rweb/Rhelp/00Index.html
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world2 <- group_by(world, subcontinent)

world2 <- mutate(world2, min.hdi = min(hdi, na.rm = TRUE))

world2[1:10, c(1, 3, 5, 27)]

## Source: local data frame [10 x 4]

## Groups: subcontinent [8]

##

## country subcontinent hdi min.hdi

## (chr) (fctr) (dbl) (dbl)

## 1 Afghanistan Southern Asia 0.468 0.468

## 2 Albania Southern Europe 0.716 0.716

## 3 Algeria Northern Africa 0.717 0.473

## 4 American Samoa Polynesia NA 0.694

## 5 Andorra Southern Europe 0.830 0.716

## 6 Angola Middle Africa 0.526 0.338

## 7 Anguilla Caribbean NA 0.471

## 8 Antigua and Barbuda Caribbean 0.774 0.471

## 9 Argentina South America 0.808 0.638

## 10 Armenia Western Asia 0.730 0.500

The first command generates a data frame world2 that is sorted by sub-continent.
The second command then creates a new variable, min.hdi, which is the min-
imum HDI value in the sub-continent. The mutate command knows that the
minimum should be created by sub-continent because this is how we grouped
the data frame.

3.6 Collapsing and Reshaping Data

We finish the discussion of data management by discussing how to collapse
and reshape data. The need to carry out these transformations does not arise
frequently. It does become relevant, however, when you engage in advanced
statistical analyses such as panel data analysis.

3.6.1 Collapsing a Data Frame

When we collapse a data frame, this means that we create a new data frame at
a higher level of aggregation. Consider, for example, the following hypothetical
data:

Person Class Height Weight
1 1 1.07 22.7
2 1 1.12 25.3
3 1 1.00 21.1
4 2 1.22 30.0
5 2 1.30 28.2
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We now want to collapse the data to the class level, for example by computing
the highest age and weight in each class and presenting those class results.
Hence, the collapsed data looks like this:

Class Min.Height Min.Weight
1 1.00 21.1
2 1.22 28.2

Such a presentation of the data is useful when you are interested in class-level
instead of individual data.

In R, collapsing data is quite easy when you use dplyr’s summarize com-
mand. I illustrate this with the world economic, political, and social indicators
data. Specifically, we create a data frame consisting of the sub-continents and
the maximum values of the human development index and political stability in
each sub-continent.

world3 <- group_by(world, subcontinent)

world3 <- summarize(world3, max.hdi = max(hdi, na.rm = TRUE),

max.stab = max(polstab, na.rm = TRUE), count = n())

head(world3)

## Source: local data frame [6 x 4]

##

## subcontinent max.hdi max.stab count

## (fctr) (dbl) (dbl) (int)

## 1 Australia and New Zealand 0.933 99 2

## 2 Caribbean 0.815 100 23

## 3 Central America 0.765 67 8

## 4 Central Asia 0.757 54 5

## 5 Eastern Africa 0.771 78 19

## 6 Eastern Asia 0.891 82 8

We have already seen the first command, which causes the data in world to be
grouped by sub-continent. The second command is new: it creates summaries,
in this case maximums as well as the number of cases (count), by sub-continent.
These are then stored in the data frame world3.

3.6.2 Changing between Long and Wide Formats

In political science, we frequently collect data over multiple years for different
countries. We can structure these data in multiple ways. A first structure is
that in wide format. Here, the years become columns. As an example, consider
the Polity scores in 1970, 1990, and 2010 for South American countries:

southam.wide <- read.dta("south america wide.dta")

head(southam.wide)
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## country polity1970 polity1990 polity2010

## 1 Argentina -9 7 8

## 2 Bolivia -5 9 7

## 3 Brazil -9 8 8

## 4 Chile 6 8 10

## 5 Colombia 7 8 7

## 6 Ecuador 0 9 5

We observe that each country receives one row. The Polity scores for the dif-
ferent years are shown in separate columns. A second structure is called the
long format. Here, the years become sub-units for each country. For example,
if we have three years, then each country occurs three times. As an example,
consider again the Polity scores for South America:

southam.long <- read.dta("south america long.dta")

head(southam.long)

## country year polity

## 1 Argentina 1970 -9

## 2 Argentina 1990 7

## 3 Argentina 2010 8

## 4 Bolivia 1970 -5

## 5 Bolivia 1990 9

## 6 Bolivia 2010 7

Now we observe that instead of having three Polity scores, we are left with only
one variable. We also observe that each country occurs three times. Each time
that the country occurs is marked by a year: 1970, 1990, or 2010. Whereas the
wide structure requires only 12 rows (there are 12 countries), the long structure
requires 36 rows (12 countries × 3 time points). The wide structure requires 4
columns, but the long structure requires only 3.

Some statistical programs would like the data to be structured long, whereas
others prefer a wide structure. It is thus useful to know how one can shift
between these formats. We prefer to do this using the package tidyr, as it
greatly simplifies the task. To convert from wide to long format, we use tidyr’s
gather function.

library(tidyr)

southam.wide$country <- factor(southam.wide$country)

southam1 <- gather(southam.wide, year, polity, polity1970:polity2010)

head(southam1, n = 15)

## country year polity

## 1 Argentina polity1970 -9

## 2 Bolivia polity1970 -5

## 3 Brazil polity1970 -9
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## 4 Chile polity1970 6

## 5 Colombia polity1970 7

## 6 Ecuador polity1970 0

## 7 Guyana polity1970 1

## 8 Paraguay polity1970 -8

## 9 Peru polity1970 -7

## 10 Suriname polity1970 NA

## 11 Uruguay polity1970 8

## 12 Venezuela polity1970 9

## 13 Argentina polity1990 7

## 14 Bolivia polity1990 9

## 15 Brazil polity1990 8

It is important to turn the country variable into a factor variable. After doing
that, we can apply the gather function. Its first argument is the name of the
data frame in wide format. Its second argument is a new index for counting
the measurement occasions, which we have labelled year. The third argument
is the name of the new variable that should contain the Polity scores. The
last argument gives the variables that should be rearranged from wide to long
format.

The conversion from long to wide format proceeds via tidyr’s spread func-
tion. The first act is again to turn the country variable into a factor. Subse-
quently, the spread function can be applied.

library(tidyr)

southam.long$country <- factor(southam.long$country)

southam2 <- spread(southam.long, year, polity)

head(southam2, n = 10)

## country 1970 1990 2010

## 1 Argentina -9 7 8

## 2 Bolivia -5 9 7

## 3 Brazil -9 8 8

## 4 Chile 6 8 10

## 5 Colombia 7 8 7

## 6 Ecuador 0 9 5

## 7 Guyana 1 -7 6

## 8 Paraguay -8 2 8

## 9 Peru -7 8 9

## 10 Suriname NA 2 5

We see that spread takes two arguments: the year and the name of the variable
that is to be spread. The function produces a new data structure with columns
named 1970, 1990, and 2010, which include the relevant Polity scores for each
country in each year.
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3.7 Conclusion

Data manipulation is one of the more difficult things to accomplish in R. Thanks
to the contributions of an active user community, however, the task is becoming
easier all of the time. We hope that the present chapter has shown that recoding
existing variables and creating new ones is really not all that difficult in R. We
also hope that you have discovered that R contains many useful functions for a
variety of data manipulation tasks, functions that, to our mind, are sometimes
more flexible than those found in other statistical software packages.

3.8 Exercises

(1) Open the data file studidata.Rda and sort the data by major field of
study (hf), then the first minor (nf 1), and then the second minor (nf 2).
Show the first ten records of the sorted data frame.

(2) Using the same data, create a data frame consisting only of those students
who major in political science. Show the last ten records of the resulting data
frame.

(3) Now draw a sample of 5 cases from the original data frame. Show the first
three variables for these cases.

(4) The variable smoke is a dummy variable that takes on the value 0 if some-
one does not smoke and 1 if he/she smokes. Create a new factor that captures
the same information but references the first group as “non-smoker” and the
second group as “smoker.”

(5) Use the cut function to create a new variable that distinguishes between
four categories of smokers: (1) students who do not smoke; (2) students who
smoke 15 or fewer cigarettes a week; (3) students who smoke more than 15
cigarettes a week but fewer than 100; and (4) students who smoke at least 100
cigarettes each week. Display the new variable as well as cigs for the first 15
students in the data frame.

(6) The data frame contains data about the estimated height (estheight) in
centimeters and the estimated weight (estweight) in kilograms for each student.
Based on these variables, construct a new variable measuring the BMI of each
student. Show this variable for the first 5 students in the data frame.

(7) Group the data frame by sex (man). Now add three new variables to the
data frame: the minimum BMI for each sex, the maximum BMI for each sex,
and the maximum number of cigarettes consumed by each sex.
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(8) Now create a new data frame of summary statistics by major. This data
frame should show the minimum BMI and the maximum number of cigarettes
consumed in each major. Take a look at the resulting data frame. Do you
observe any pattern in BMI and cigarette consumption by major?
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Part II

Descriptive Statistics
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Chapter 4

Tabulating and Visualizing
Frequencies

Now that we have seen the basics of R let us delve into some real data analysis.
In this chapter, we discuss how one can tabulate and visualize single variables.
Political attributes such as whether a country is a democracy are variables be-
cause not all units score identical on those attributes (e.g., not all countries are
democracies but some are). From a descriptive perspective, political scientists
want to know how often particular values arise in the data, for example, how
many democracies there are. Frequency tables, bar charts, histograms, and
density plots are perfect devices for conveying information about (relative) fre-
quencies. R is capable of creating beautiful tables and graphics and this chapter
shows how.

4.1 Required Packages

For the exercises in this chapter, you will need to install and activate the fol-
lowing library:

• ggplot2

4.2 Frequency Tables

4.2.1 Tabulating Factors

Consider again the data from the students of the University of Zurich. We want
to know how the students are distributed across different majors. The easiest
way to do this is to generate a frequency table. R contains several commands
for creating frequency tables. As part of the base installation, one can use the
table command.

45
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load("studidata.Rda")

table(dat2$hf)

##

## BWL Englisch

## 1 1

## Erziehungswissenschaften Ethnologie

## 1 1

## Geschichte Politikwissenschaften

## 15 36

## Psychologie Sozialanthropologie

## 4 3

## Soziologie VWL

## 15 8

## Zeitgeschichte

## 1

As always, you can also assign the table to an object. This is useful if the goal
is to transform the frequencies into relative frequencies:

mytable <- table(dat2$hf)

prop.table(mytable)

##

## BWL Englisch

## 0.01162791 0.01162791

## Erziehungswissenschaften Ethnologie

## 0.01162791 0.01162791

## Geschichte Politikwissenschaften

## 0.17441860 0.41860465

## Psychologie Sozialanthropologie

## 0.04651163 0.03488372

## Soziologie VWL

## 0.17441860 0.09302326

## Zeitgeschichte

## 0.01162791

Personally, we would prefer to see percentages and would like them to be
rounded to the first decimal value. This requires just a little bit of adjusting
the prop.table command:

round(100 * prop.table(mytable), 1)

##

## BWL Englisch

## 1.2 1.2
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## Erziehungswissenschaften Ethnologie

## 1.2 1.2

## Geschichte Politikwissenschaften

## 17.4 41.9

## Psychologie Sozialanthropologie

## 4.7 3.5

## Soziologie VWL

## 17.4 9.3

## Zeitgeschichte

## 1.2

When you report percentages like this, you should always report the sample
size. This can be obtained using a command that we already encountered in
Chapter 3:

sum(!is.na(dat2$hf))

## [1] 86

By default, the frequency table generated by table is sorted in the same
order as the values of the factor. If we would like to sort the table by the
magnitude of the frequencies, then the following syntax will prove useful.1

mytable <- sort(table(dat2$hf), decreasing = TRUE)

mytable

##

## Politikwissenschaften Geschichte

## 36 15

## Soziologie VWL

## 15 8

## Psychologie Sozialanthropologie

## 4 3

## BWL Englisch

## 1 1

## Erziehungswissenschaften Ethnologie

## 1 1

## Zeitgeschichte

## 1

4.2.2 Tabulating Numeric Variables

In the examples so far, we have tabulated factors. We can tabulate numeric
variables just as easily, but here it sometimes makes more sense to perform

1The sort function is an alternative for dplyr’s arrange command.
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some form of grouping prior to the tabulation. Take, for example, the estimated
height from the UZH student data. If we tabulate this without some form of
grouping, we find that the result is not very informative.

table(dat2$estheight)

##

## 163 165 166

## 1 2 1

## 167 168 169

## 1 2 2

## 169.75 170 171

## 1 17 4

## 172 173 174

## 8 4 1

## 175 176 177

## 12 7 1

## 178 179 180

## 5 3 5

## 181 182 182.529998779297

## 4 2 1

## 183 185

## 1 1

This is not very informative because there are a lot of height values that
occur only once. In this case, we may wish to convert the numeric variable to
a factor using, for example, Sturges’ method for computing the number of bins
and bin widths. It is not difficult to do this, as the following syntax shows.

attach(dat2)

factor.height<-factor(cut(estheight,

breaks=nclass.Sturges(estheight)))

table(factor.height)

## factor.height

## (163,166] (166,168] (168,171] (171,174] (174,177] (177,180]

## 3 4 24 13 19 9

## (180,182] (182,185]

## 11 3

detach(dat2)

The nclass.Sturges option in the cut function takes care of the creation of
the bins according to Sturges’ formula, which makes life a lot easier for us. The
results now clearly show that the most common height bracket is (168, 171], i.e.,
heights greater than 1 meter 68 and up to 1 meter 71.



4.3. DATA VISUALIZATION 49

The categories of the grouped height variable constitute a rank ordering. For
this kind of variable, it makes sense to compute both proportions and cumulative
frequencies. A particularly elegant syntax for doing so is the following:

height.dat <- as.data.frame(table(factor.height))

height.dat <- transform(height.dat, cumFreq = cumsum(Freq),

relative = prop.table(Freq))

height.dat

## factor.height Freq cumFreq relative

## 1 (163,166] 3 3 0.03488372

## 2 (166,168] 4 7 0.04651163

## 3 (168,171] 24 31 0.27906977

## 4 (171,174] 13 44 0.15116279

## 5 (174,177] 19 63 0.22093023

## 6 (177,180] 9 72 0.10465116

## 7 (180,182] 11 83 0.12790698

## 8 (182,185] 3 86 0.03488372

This table now shows us that 44 of the students have heights of 1.74 meters or
below.

4.3 Data Visualization

Graphics are one of R’s great strengths. While the basic plots already look
quite nice, you can truly unleash R’s graphical powers when you use the ggplot2
package. As you will see shortly, this is truly capable of producing some amazing
looking graphics. Moreover, ggplot2 has a very nice and simple architecture
that is easily mastered.

4.3.1 Terminology

The name ggplot stands for grammar of graphics plot, which means that there
is an actual grammar underlying the construction of graphics. This grammar has
several elements, some of which are optional but most of which are mandatory.

Data Graphs in ggplot2 should reference the data we want to visualize. These
data have to be in the form of a R data frame.

Coordinate System We have to specify the coordinates of a 2-dimensional
space in which the data will be mapped. For our purposes, these will usually
be Cartesian coordinates.

Geoms Geoms are the geometric objects that are used to represent the data
in the space. These can be points, lines, bars, and many other objects.
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Aesthetics As the name implies, the aesthetics influence the aesthetic prop-
erties of the graph. This includes colors, line sizes, point sizes, etc.

Scales Scales determine how visual characteristics capture values in the data.
For example, we can decide that values should be displayed in their original
metric, but we can also opt for a log-scale.

Stats Stats reference statistics, more precisely, statistical transformations of
the data that we would like to visualize. For example, we could opt for displaying
means, medians, regression lines, etc. (Again, these concepts will be discussed
in great detail later in this work book.)

Themes In ggplot2, a theme is an optional element that gives further control
over the axes of the plot. This is sometimes useful, for example, to control the
over-plotting of axis labels.

Facets In ggplot2, facets are used to visualize sub-groups in the data frame.
This is often of great help when we seek to explore data, so that we encourage
the use of facets in data visualization.

Typically, the elements of the ggplot2 grammar are introduced in layers. For
example, we first specify the data and the coordinates, only to add information
about the geoms in a next step. These layers are connected through a plus
symbol. The process will be illustrated here for bar charts, histograms, and
density plots.

4.3.2 Creating Bar Charts

Bar charts are a perfect tool for visualizing nominal and ordinal variables. Cre-
ating them is quite easy using ggplot2. Here, we illustrate the grammar for this
chart by visualizing the distribution of majors in our sample of UZH students.
We start by specifying the data frame and the horizontal axis of the bar chart;
the vertical axis, by default, is a frequency count.

load("studidata.Rda")

library(ggplot2)

p <- ggplot(dat2, aes(x = hf))

The object p, which is a list, now contains the basic space in which a geom can
be placed. To place the geom, we issue the following syntax:

p + geom_bar()

This is all we need to do to create a basic bar chart (see Figure 4.1).
Figure 4.1 does not look very nice. There are two critical problems and

one aesthetic problem. Critical is that the axis title (hf) is not particularly
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Figure 4.1: A Basic Bar Chart
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Note: This bar chart has not yet been overhauled to make it nicer. As a result, the bars are
in basic black, whereas the axis labels overlap because they are too long.
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meaningful. Also critical is that the axis labels (the names of the major fields
of study) overlap so that they are unreadable. An aesthetic problem, to our
minds, is with the black colors of the bars. They sort of jump of the page and,
should you want to print the graph, they will consume a lot of black ink. So let
us fix these problems.

p + geom_bar(col = "black", fill = "white") +

theme(axis.text.x = element_text(angle = 45, hjust = 1),

axis.title.x = element_blank()) +

ggtitle("Hauptfach")

The first line creates the bar chart with each bar demarcated by black lines
and filled in with a white color. The second line places the axis labels at a 45
degree angle, preventing them from overlapping. The third line suppresses the
title for the horizontal axis. Instead, the fourth line clarifies the meaning of
the horizontal axis by adding the title “Hauptfach” to the graph. This is just
a matter of taste: we find the title more attractive than the horizontal axis,
which would appear below the labels and as such would be quite far down. The
resulting graph is shown in Figure 4.2.

The bar chart that we just produced shows frequency counts. We might
want to show percentages instead. This requires a bit of revision of the code.

p + geom_bar(aes(y = 100*((..count..)/sum(..count..))),

col = "black", fill = "white") +

theme(axis.text.x = element_text(angle = 45, hjust = 1),

axis.title.x = element_blank()) +

ylab("Percent") +

ggtitle("Hauptfach")

The action is in the first line, where we take the frequency count for each
category and the divide it by the sum of all of the frequency counts (i.e., n) to
form a proportion. The multiplication by 100 converts this to a percentage. The
result is shown in Figure 4.3. This graph clearly reveals that over 40 percent of
the sample has political science as its major. When you present a graph with
percentages, it is good practice to include information about the sample size, as
we have done in Figure 4.3.

We conclude the discussion of bar charts by introducing faceting. Specifi-
cally, we are interested in the question of whether the distribution of majors is
different for men and women. This requires only one additional argument to
the code we just provided:

p + geom_bar(aes(y = 100*((..count..)/sum(..count..))),

col = "black", fill = "white") +

theme(axis.text.x = element_text(angle = 45, hjust = 1),

axis.title.x = element_blank()) +

ylab("Percent") +
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Figure 4.2: An Edited Bar Chart
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Note: The bar chart now clearly shows that it pertains to students’ major fields of study.
Those fields can be clearly identified on the horizontal axis.
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Figure 4.3: A Bar Chart with Percentages
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Note: The vertical axis of the bar chart is now in a percentage metric (n = 86).
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Figure 4.4: A Facetted Bar Chart
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Note: Note the separate plots for men (n = 48) and women (n = 38).

ggtitle("Hauptfach") +

facet_wrap(~man)

The last line tells ggplot2 to split the sample by the variable man. This results
in separate bar charts for men and women, as is shown in Figure 4.4. The graph
shows that the percentage of political science majors among men is higher than
that among women. We also see that a higher percentage of men have history
and economics majors, and that the diversity of majors is greater among female
students (e.g., BWL, English, etc.).

4.3.3 Creating Histograms

Histograms are useful visualizations for interval and ratio scales. Their con-
struction with ggplot2 is quite easy, as we shall show in this section. Our
example concerns the estimated heights of the UZH students. The following
syntax creates a histogram with a color scheme similar to Figure 4.2:

p <- ggplot(dat2, aes(x = estheight))

p + geom_histogram(col = "black", fill = "white") +
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Figure 4.5: A Histogram with Many Bins
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Note: Histogram using ggplot2’s default bin width of range/30.

xlab("Height in cm")

This graph utilizes the default of 30 bins, which results in gaps in the histogram
(see Figure 4.5). As you can see, the geom is that of histogram. Also note
that the horizontal axis label clearly indicates the metric (centimeters) of the
variable. It is important that you always indicate this.

If we want to control the number of bins, then ggplot2 requires that we do
so by setting the bin width. To set the bin width according to Sturges, we can
issue the following syntax:

wide <- ceiling((max(dat2$estheight) - min(dat2$estheight))/

nclass.Sturges(dat2$estheight))

We then issue the following syntax for the geom:

p + geom_histogram(col = "black", fill = "white",

binwidth = wide) +

xlab("Height in cm")
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Figure 4.6: A Histogram with Expanded Bin Widths
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Note: Histogram using Sturges’ procedure for setting the number of bins.

The result is the histogram shown in Figure 4.6, which contains eight bins. Par-
enthetically, the reason that ggplot2 sets the number of bins to a relatively large
number by default is that it encourages you to consider a reasonable amount of
detail in the data. It considers this to be better statistical practice than the ap-
plication of a somewhat arbitrary binning scheme like that of Sturges, although
the latter approach characterizes R’s default program for creating histograms,
to wit hist.

The procedures shown so far produce histograms stated in terms of frequency
counts. To generate histograms of percentages, we modify the command in the
same manner as we did for bar charts:

p + geom_histogram(aes(y = 100*((..count..)/sum(..count..))),

binwidth = wide, col = "black",

fill = "white") +

xlab("Height in cm") +

ylab("Percent")

The result can be seen in Figure 4.7.
Finally, it is again possible to apply facets. In Figure 4.8, we show separate

histograms for men and women. We created this graph using the following
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Figure 4.7: A Histogram with Expanded Bin Widths and Percentages
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Note: Histogram using Sturges’ procedure for setting the number of bins. The vertical axis
is stated in a percentage metric (n = 86).
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Figure 4.8: A Facetted Histogram
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Note: Note the separate plots for men (n = 48) and women (n = 38).

syntax:

p + geom_histogram(aes(y = 100*((..count..)/sum(..count..))),

binwidth = wide, col = "black",

fill = "white") +

xlab("Height in cm") +

ylab("Percent") +

facet_wrap(~man)

The graph clearly shows that men tend to be taller than women. As one indica-
tion of this pattern one could focus on the tallest bar, which corresponds to the
most common height in the sample. For women, this tallest bar is lower than
for men.

4.3.4 Density Plots

The final use of ggplot2 that we want to illustrate in this chapter concerns the
construction of density plots. We use students’ heights again as an example.
The geom for creating a density is geom density. In its simplest form, the
syntax for a density plot is:
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Figure 4.9: A Density Plot
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Note: This plot was created using the default settings in ggplot2.

library(ggplot2)

ggplot(dat2, aes(x = estheight)) + geom_density()

This yields Figure 4.9, which is a continuous approximation of the distribution
of height using the default settings in ggplot2.

If we want to control the appearance of the density plot, then two parameters
are of particular interest. The first is the kernel that is being used. The default
in ggplot2 is a Gaussian kernel but many other options are available. Figure
4.10 illustrates the effect of the kernel on the shape of the density plot. Our
personal favorites are Epanechnikov and Gaussian kernels, since they produce
smooth curves while preserving detail, but you may find that another kernel
works better for you. The key here is that you should choose a kernel that
allows you to understand the empirical distribution of the variable of interest.
To change the kernel to, for example, Epanechnikov, you can change the previous
syntax in the following manner:

library(ggplot2)

ggplot(dat2, aes(x = estheight)) +

geom_density(kernel="epanechnikov")
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Figure 4.10: The Impact of Kernel Selection
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Note: The plot shows the effect of different kernel choices on the shape of the density plot.
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The second parameter that influences the shape of the density plot is the
bandwidth, which determines how many points in the vicinity of the target
point are considered when computing the density at the target point. Figure
4.11 shows the effect of different bandwidths on the density plot. When the
bandwidth is set very low, for example, at one hundredth of the standard de-
viation (SD) of the kernel, then the resulting plot is extremely course and not
very helpful in clarifying the shape of the distribution. However, too large of
a bandwidth, for example, 3 standard deviations of the kernel, means that im-
portant details are lost. Again, the result is that the plot becomes useless. It
is best to play around with different bandwidths and to decide on one that re-
veals both the overall shape of the distribution and important details such as
spikes. In ggplot2, the bandwidth is controlled by an adjustment parameter.
For example,

library(ggplot2)

ggplot(dat2, aes(x = estheight)) +

geom_density(adjust=.5)

sets the adjustment to .5 times the bandwidth, which is equal to the standard
deviation of the selected kernel.

Frequently, histograms and density plots are combined to give two different
perspectives on the distribution of a variable. It is easy to do this, as long
as you ensure that the y-axis for the histogram captures density (i.e., relative
frequency) information and not raw frequencies.

library(ggplot2)

ggplot(dat2, aes(x = estheight)) +

geom_histogram(aes(y = ..density..)) +

geom_density(adjust = .5, col = "blue", size = 1.5) +

xlab("Height in cm")

The resulting graph is displayed in Figure 4.12. With a bandwidth of half of a
standard deviation, we see that most of the spikes in the histogram are nicely
reflected in the density plot. Note that the size parameter causes the line of the
density plot to be drawn thicker so that it is better visible.

We conclude the discussion of density plots by considering once more the
differences between men and women. As we have done in the past, we can create
separate density plots for men and women using the facet wrap function:

library(ggplot2)

ggplot(dat2, aes(x = estheight)) +

geom_density(adjust = .5) +

xlab("Height in cm") +

facet_wrap(~man)
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Figure 4.11: The Impact of Bandwidth
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Note: The plot shows the effect of different bandwidth choices on the shape of the density
plot. All plots use the Gaussian kernel.
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Figure 4.12: A Combined Histogram and Density Plot
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Note: The density plot uses the Gaussian Kernel and a standard deviation of .5.
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Figure 4.13: Facetted Density Plots
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Note: The top panel shows separate density plots for men and women. The bottom panel
differentiates between men and women by using colors.

The result is shown in the top panel of Figure 4.13. However, we can also do
the facetting within a single figure by drawing the density plots for men and
women in different colors:

library(ggplot2)

ggplot(dat2, aes(x = estheight)) +

geom_density(aes(col = factor(man)), adjust = .5) +

xlab("Height in cm")

The result of this specification is shown in the bottom panel of Figure 4.13.
Parenthetically, the use of colors to discriminate between men and women is
also available for bar charts and histograms. We did not illustrate this option
in those contexts because the end result is typically a graph that is too busy to
be interpreted easily. Even with density plots, we would not use colors for more
than three sub-groups, as this would also make for a graph where too much is
going on all at once.

If you choose to work with colors, then you can easily control the choice of
colors and the layout of the legend. This is shown in Figure 4.14. Panel (a)
omits the legend title and is created by using the following syntax:
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library(ggplot2)

p <- ggplot(dat2, aes(x = estheight)) +

geom_density(aes(col = factor(man)), adjust = .5) +

xlab("Height in cm")

p1 <- p + theme(legend.title = element_blank()) +

ggtitle("Panel (a)")

Panel (b) changes the legend title and is obtained using:

library(ggplot2)

p2 <- p + scale_color_discrete(name = "Geschlaecht:") +

ggtitle("Panel (b)")

Panel (c) changes the legend title and labels and requires the following syntax:

library(ggplot2)

p3 <- p + scale_color_discrete(name = "Sex:",

labels = c("Female", "Male")) +

ggtitle("Panel (c)")

Finally, panel (d) changes the legend title, labels, and colors:

p4 <- p + scale_color_manual(values = c("#E69F00", "#56B4E9"),

name = "Sex:",

labels = c("Female", "male")) +

ggtitle("Panel (d)")

Codes such as #E69F00 reference the color palette as a hexadecimal red-green-
blue (RGB) triplet of intensities of those colors. Details can be found in the
Cookbook for R.

4.4 Conclusions

In this chapter, we have taken a look at tabular and visual displays of frequency
distributions. We introduced the table command for creating frequency tables
and the ggplot2 library for generating bar charts, histograms, and density
plots. I hope you agree that R is capable of generating very attractive graphics.
This is one of R’s many strengths. Well designed graphs and tables convey
important information and play a central role in the presentation of statistical
results. As a result, this will certainly not be the last time we will use the
commands and package introduced in this chapter. Hopefully, you now have a
basic appreciation of how graphics and tables are built in R.

http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/
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Figure 4.14: Legends and Colors in Density Plots
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Note: The panels show different colors and legends that can be created using ggplot2.
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4.5 Exercises

(1) Load world indicators.dta. Now create a frequency table displaying
the democracy indicator. How many democracies are there in the data? And
how many non-democracies are there?

(2) Redo the table from (1) so that it shows the percentages of democracies
and non-democracies.

(3) Take a look at the variable polstab, which measures political stability.
Tabulate the frequency distribution for this variable after you have created bins
using Sturges’ procedure.

(4) For the binned version of political stability, generate a data frame show-
ing the intervals, frequencies, proportions, and cumulative frequencies. Which
interval is most common? What is the cumulative frequency for this interval
and how do you interpret this? What percentage of cases fall into this interval?

(5) Create a bar chart of the democracy indicator where the vertical axis
shows percentages.

(6) Create a histogram of political stability using Sturges’ binning rule and
letting the vertical axis show percentages.

(7) Create a facetted version of the political stability histogram where the
sub-groups correspond to democracies and non-democracies respectively.

(8) Create a density plot using an Epanechnikov kernel and an appropriate
bandwidth for the corruption variable (corrupt). Justify why you chose the
bandwidth.

(9) Repeat the exercise in (8) but now overlaying the density function on top
off a histogram. How well do the spikes of the density function capture the spikes
in the histogram? Could this be improved by choosing a different bandwidth?

(10) Within the same plot, show the density of corruption for democracies
and for non-democracies. What does the graph tell you?



Chapter 5

Summary Statistics

In Chapter 2, we introduced the summary command. This produced a number
of summary statistics that, at the time, made little sense. Now that we have dis-
cussed summary statistics in the lecture, it becomes possible to work with them.
The current chapter describes a number of methods in R for obtaining summary
statistics. In addition, we discuss how those statistics should be interpreted.

5.1 Required Packages

For the exercises in this chapter, you will need to install and activate the fol-
lowing libraries:

• ggplot2

• moments

• psych

5.2 Measures of Central Tendency

5.2.1 The Mode

R does not have a built-in function for computing the mode, but one can be
programmed quite easily:1

Mode <- function(x) {
ux <- unique(x)

ux[which.max(tabulate(match(x, ux)))]

}

1The function shown here was proposed by Ken Williams at Stackoverflow.
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http://stackoverflow.com/questions/2547402/standard-library-function-in-r-for-finding-the-mode
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We apply this function to the world political and economic indicators (world
indicators.dta), specifically to the Polity variable:

library(foreign)

world <- read.dta("world indicators.dta")

Mode(world$polity)

## [1] NA

We see that the mode is NA, which is actually correct because the Polity indicator
is missing for most of the countries in the data frame. Still, this result is probably
not what we are looking for. We would much rather obtain the mode for the
subset of countries where a Polity score is available. To accomplish this, we first
create a subset of the data frame that pertains to the Polity variable and then
remove the missing values:

library(dplyr)

polity <- select(world, polity)

polity <- na.omit(polity)

The third command removes the missing values from the data frame polity,
which consists only of the Polity variable. We now apply the function for the
mode:

Mode(polity$polity)

## [1] 10

This shows that the most frequent score on the Polity variable is 10 when the
score is actually available. This is easily verified using the table function:

table(polity$polity)

##

## -88 -77 -66 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

## 1 2 2 2 4 3 11 3 2 5 4 7 3 2 2

## 2 3 4 5 6 7 8 9 10

## 3 4 5 6 12 12 21 15 34

5.2.2 The Median

R has a built-in function for the median. To use this function, it is again
important to understand how to handle missing data. If a variable contains
missing values and we apply the function median without any options, then R
returns NA. To prevent this from happening, you should add the option na.rm

= TRUE, which removes the missing values. For example,
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median(world$hdi, na.rm = TRUE)

## [1] 0.717

produces the median value of the human development index (HDI), in this case
0.717. We can interpret this as follows: half of the HDI values fall below or at
0.717 and half of the values exceed or are at 0.717.

5.2.3 Means

Arithmetic Mean In R, computation of the arithmetic mean follows the
same logic as the median. For example, to compute the mean of the HDI we
should issue the following syntax:

mean(world$hdi, na.rm = TRUE)

## [1] 0.685631

Again, the option of na.rm = TRUE is mandatory, as R would otherwise return
NA if there are any missing data.

Geometric Mean The geometric mean is useful in the context of propor-
tional growth. The variable growth in the data set world indicators gives
the population growth in each country in 2013 (relative to 2012). The geomet-
ric mean requires that the values are positive, so that we need to select those
countries for which growth was flat or negative. We do this with the dplyr

library. For the geometric mean itself, we use the psych package.

library(dplyr)

library(psych)

##

## Attaching package: ’psych’

##

## The following object is masked from ’package:car’:

##

## logit

growth <- filter(world, growth > 0)

geometric.mean(growth$growth, na.rm = TRUE)

## [1] 1.201933

As another example, consider the following financial application. A person
invests 1,000 Swiss Francs. After the first year, her stocks are worth 1,200
Francs. After two years, they are worth 1,250 Francs, and after the third year
the worth is CHF1,400. The growth rates are (1200−1000)/1000 = .200 for year



72 CHAPTER 5. SUMMARY STATISTICS

1, (1250 − 1200)/1200 = .042 for year 2, and .120 for year 3. Or, we multiply
the original investment by 1.200 in the first year, by 1.042 in the second year,
and by 1.120 in the third year. We enter the data and compute the geometric
mean as:

library(psych)

invest <- c(1.2, 1.042, 1.12)

geometric.mean(invest)

## [1] 1.118808

(We do not need to add na.rm = TRUE because there are no missing values.)
This is the constant growth rate that would yield the same final amount: in
year 1, we get 1119; in year 2, we get 1252; and, in year 3, we get 1400. Note
that the amount produced for the third year exactly replicates the worth of the
investment in that year. This would not have happened had we computed the
arithmetic mean. It is easily verified that the arithmetic mean is 1.121. This is
too high, however, as it would suggest an investment worth of 1407 in year 3,
more than was actually realized.

Harmonic Mean The harmonic mean is used most often when the variable
is a rate and/or when the effect of atypical data points should be minimized.
The world economic, political, and social indicator data include the variable
homicide, which gives the number of homicides per 100,000 inhabitants in var-
ious countries. To compute the harmonic mean, we proceed as follows.

library(psych)

harmonic.mean(world$homicide, na.rm = TRUE)

## [1] 0

This is equal to the reciprocal of the arithmetic mean of the reciprocal homicide
rates. On the average, we would say that the homicide rate is 0. We see that
the harmonic mean is weighted toward the lower values of the homicide rates.
This is one of the properties of harmonic means.

To understand the idea of harmonic means a bit better, let us look at another,
non-political example. Imagine you are a cook and you are expected to deliver
a number of chicken pot pies. You can prepare 12 pot pies per hour. With your
oven capacity, you can cook 4 pies per hour. What is the overall production
rate? The average is 6 pies per hour for each stage of the cooking process. If we
could replace the two phases with a process that yields 6 pies an hour in each
phase, we would get the same result. Again, note that the harmonic mean is
weighted down toward the slower of the two production processes.
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5.3 Quantiles

Consider the human development index in world indicators.dta. We would
like to identify the quartiles for this variable.2 As it turns out, this is quite
simple in R:

quantile(world$hdi, probs = c(0.25, 0.5, 0.75), na.rm = TRUE,

type = 6)

## 25% 50% 75%

## 0.561 0.717 0.812

The probs argument is critical in specifying the quantiles one is looking for:
Here, we have specified values of 0.25, 0.50, and 0.75 to capture the 1st, 2nd,
and 3rd quartiles. As we have seen before, na.rm = TRUE removes the missing
values prior to computing the quartiles. The final argument is type = 6, which
influences the method for computing the quantiles. Here, we have specified
method 6, which corresponds to what we discussed in class. Substantively, the
results imply that 25 percent of the countries are at or below an HDI value of
0.561, that 50 percent of the countries are at or below an HDI value of 0.717,
and that 75 percent of the countries are at or below an HDI value of 0.812.

If instead we would have liked to compute quintiles, then the only argument
that would have to be adjusted is the probs argument. Specifically,

quantile(world$hdi, probs = c(0.2, 0.4, 0.6, 0.8, 1), na.rm = TRUE,

type = 6)

## 20% 40% 60% 80% 100%

## 0.5168 0.6684 0.7486 0.8300 0.9440

provides the 1st, 2nd, 3rd, 4th, and 5th HDI quintiles.

5.4 Dispersion

5.4.1 The Inter-Quartile Range

In R, the inter-quartile range (IQR) can be computed using the IQR command.
The following syntax applies the command to the human development index:

IQR(world$hdi, na.rm = TRUE, type = 6)

## [1] 0.251

Here type again controls the method of computing the 1st and 3rd quartiles
that guide the IQR.

2The United Nations use the quartile values of the component indicators of the HDI to
group countries. Here, we are interested in the quartiles of the HDI itself.
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5.4.2 The Range

R has a range command but it does not actually produce the range in the
classical sense of the term. Instead, it shows the minimum and maximum values
of a variable. For example, applying

range(world$hdi, na.rm = TRUE)

## [1] 0.337 0.944

shows that the minimum HDI in the data is 0.337 and that the maximum is
0.944. The typical definition of the range is the difference between the maximum
and minimum of a variable. It is easy to adjust the range command to obtain
this result:

range(world$hdi, na.rm = TRUE)[2] -

range(world$hdi, na.rm = TRUE)[1]

## [1] 0.607

Here range()[2] references the maximum and range()[1] the minimum. The
difference between those values is the range. In this case, the range is 0.607,
which is considerable given that the maximum conceivable range on the HDI is
1.

5.4.3 The Variance and Standard Deviation

To obtain the variance, we issue the following syntax:

var(world$hdi, na.rm = TRUE)

## [1] 0.02435892

This gives us the variance of HDI in the world economic, political, and social
indicators data. To obtain the standard deviation, the following syntax suffices:

sd(world$hdi, na.rm = TRUE)

## [1] 0.1560735

The maximum possible standard deviation on a 0-1 variable such as the HDI
is .5. Our standard deviation is 31 percent of this maximum, which may be
considered a moderate degree of dispersion.
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5.5 Skewness and Kurtosis

Sticking with the human development index, let’s consider its skewness and kur-
tosis. To compute these statistics, we need the moments library. The skewness
of the HDI can be computed using

library(moments)

skewness(world$hdi, na.rm = TRUE)

## [1] -0.4296318

We observe that the HDI has a negative skew.
The kurtosis of the HDI is obtained through the following code:

library(moments)

kurtosis(world$hdi, na.rm = TRUE)

## [1] 2.197094

To obtain the excess kurtosis we need to subtract 3. This is done very easily:

library(moments)

kurtosis(world$hdi, na.rm = TRUE) - 3

## [1] -0.8029064

This shows that the HDI distribution is slightly platykurtic.

5.6 Box Plots

We conclude this chapter by discussing the construction of box plots. For this
we need to use the ggplot2 library. The relevant geom is geom boxplot. By
default, this geom assumes that you want to apply facetting. We can use this
to generate a box plot of HDI for each of the continents in the data:

library(ggplot2)

ggplot(world, aes(fatcor(continent), hdi)) +

geom_boxplot() + xlab("") + ylab("HDI")

The resulting graph is shown in Figure 5.1. This figure clearly shows, for ex-
ample, that the human development index has a comparatively high median
and small spread—the box is narrow—in Europe. It also shows that there are
several outliers in the Americas. The outliers with an unusually high HDI (for
the Americas) are Canada and the USA, whereas the outlier with an unusually
low HDI is Haiti.

Box plots are at their most useful when we compare distributions like we
have done in Figure 5.1. However, you can trick ggplot into creating a box plot
of a variable without applying facetting:
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Figure 5.1: Box Plot of Human Development by Continent
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Note: The plot shows clear differences in the central tendency and spread of the HDI across
continents.
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Figure 5.2: Box Plot of Human Development
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Note: No facetting has been applied.

ggplot(world, aes(factor(1), hdi)) +

geom_boxplot() + xlab("") + ylab("HDI") +

scale_x_discrete(breaks=NULL)

The trick is the specification of the dummy factor 1. Since this would display
an unsightly 1 on the horizontal axis, we add the scale option to suppress it.
The result is shown in Figure 5.2. Looking at the location of the first and third
quartiles relative to the median, as well as the length of the whiskers, it is clear
that there is a tail in the direction of lower values of the HDI. This is consistent
with the negative skewness coefficient we observed earlier.

5.7 Conclusions

In this chapter, we showed how R can be used to obtain any number of summary
statistics about single variables. In the next two chapters, we shall focus on
methods for describing relationships between two variables at a time. Before
going there, however, you will have an opportunity to practice what you learnt
in this chapter.
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5.8 Exercises

(1) Load world indicators.dta. This data contains a variable demindx,
which is the democracy indicator of the Economist Intelligence Unit. It ranges
from 0 to 10, with higher values indicating a better functioning democracy.
Compute the mode of the democracy index, ignoring those countries that have
missing values on the index. Interpret the result.

(2) Now compute the median of the democracy index, again ignoring countries
with missing values on the index. Interpret the result.

(3) Compute the arithmetic mean of the democracy index, ignoring once more
countries with missing values. Interpret the result.

(4) Compute the quartiles of the democracy index and interpret the result.

(5) What is the inter-quartile range of the democracy index?

(6) What is the variance of the democracy index? Is this large or small com-
pared to the maximum possible variance?

(7) Compute the skewness of the democracy index and interpret the result.

(8) Compute the excess kurtosis of the democracy index and interpret the
result.

(9) Limit your analysis to the European continent. Now create a box plot of
the democracy index where you facet by sub-continent. Interpret the resulting
graph.

(10) The data set world indicators.dta includes two indicators for democ-
racy in 2013, to wit, the aforementioned democracy index and the Polity democ-
racy score (politydemo). Write a function that computes the geometric mean
of these two indicators. What value of the geometric mean do you obtain for
Switzerland?



Chapter 6

Contingency Tables

In this chapter, we consider the construction of contingency tables, as well as
the computation of measures of association for contingency tables. When your
variables are nominal or ordinal in nature, contingency tables often are the
best way to display and analyze relationships. R has some basic capabilities
for the creation and analysis of contingency tables. Through various add-on
libraries, these capabilities can be expanded so that they cover everything we
have discussed in the course.

6.1 Required Packages

For the exercises in this chapter, you will need to install and activate the fol-
lowing libraries:

• epitools

• gmodels

• PResiduals

• rapport

• vcd

6.2 Creating a Contingency Table

6.2.1 Twoway Tables

For the creation of a two-way contingency table—i.e., a table of two variables—
one could use R’s built-in table command. However, we like to use the gmodels
library because it automates a number of basic functions, such as marginals and
percentages. To illustrate the use of this library, let us consider the democracy
indicator in world indicators.dta and tabulate it against continent.

79
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library(foreign)

library(gmodels)

world <- read.dta("world indicators.dta")

CrossTable(world$continent, world$demo, digits = 3, expected = FALSE,

prop.r = FALSE, prop.c = FALSE, prop.t = FALSE, prop.chisq = FALSE)

##

##

## Cell Contents

## |-------------------------|

## | N |

## |-------------------------|

##

##

## Total Observations in Table: 159

##

##

## | world$demo

## world$continent | Non-Democratic | Democratic | Row Total |

## ----------------|----------------|----------------|----------------|

## Africa | 41 | 8 | 49 |

## ----------------|----------------|----------------|----------------|

## Americas | 7 | 17 | 24 |

## ----------------|----------------|----------------|----------------|

## Asia | 36 | 9 | 45 |

## ----------------|----------------|----------------|----------------|

## Europe | 3 | 33 | 36 |

## ----------------|----------------|----------------|----------------|

## Oceania | 2 | 3 | 5 |

## ----------------|----------------|----------------|----------------|

## Column Total | 89 | 70 | 159 |

## ----------------|----------------|----------------|----------------|

##

##

Notice that the row variable is declared first and the column variable is defined
second. We observe that there are 41 non-democratic African countries, 8 demo-
cratic African countries, 7 non-democratic American countries, 17 democratic
American countries, etc.1

The table we just created is barebones, since it only reports frequencies. We
can easily add proportions, however. To add proportions that take n as their
base, we change prop.t = FALSE to prop.t = TRUE.

1The option digits = 3 has the effect that any results reported in the cells have a precision
of three digits. Obviously, one can change this number. The option may also be left out
altogether.
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library(gmodels)

CrossTable(world$continent, world$demo, digits = 3, expected = FALSE,

prop.r = FALSE, prop.c = FALSE, prop.t = TRUE, prop.chisq = FALSE)

##

##

## Cell Contents

## |-------------------------|

## | N |

## | N / Table Total |

## |-------------------------|

##

##

## Total Observations in Table: 159

##

##

## | world$demo

## world$continent | Non-Democratic | Democratic | Row Total |

## ----------------|----------------|----------------|----------------|

## Africa | 41 | 8 | 49 |

## | 0.258 | 0.050 | |

## ----------------|----------------|----------------|----------------|

## Americas | 7 | 17 | 24 |

## | 0.044 | 0.107 | |

## ----------------|----------------|----------------|----------------|

## Asia | 36 | 9 | 45 |

## | 0.226 | 0.057 | |

## ----------------|----------------|----------------|----------------|

## Europe | 3 | 33 | 36 |

## | 0.019 | 0.208 | |

## ----------------|----------------|----------------|----------------|

## Oceania | 2 | 3 | 5 |

## | 0.013 | 0.019 | |

## ----------------|----------------|----------------|----------------|

## Column Total | 89 | 70 | 159 |

## ----------------|----------------|----------------|----------------|

##

##

We now observe, for example, that the proportion of non-democratic countries
that reside in Oceania is 0.013.

To add proportions that take the column totals as their base, we change
prop.c = FALSE to prop.c = TRUE.
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library(gmodels)

CrossTable(world$continent, world$demo, digits = 3, expected = FALSE,

prop.r = FALSE, prop.c = TRUE, prop.t = FALSE, prop.chisq = FALSE)

##

##

## Cell Contents

## |-------------------------|

## | N |

## | N / Col Total |

## |-------------------------|

##

##

## Total Observations in Table: 159

##

##

## | world$demo

## world$continent | Non-Democratic | Democratic | Row Total |

## ----------------|----------------|----------------|----------------|

## Africa | 41 | 8 | 49 |

## | 0.461 | 0.114 | |

## ----------------|----------------|----------------|----------------|

## Americas | 7 | 17 | 24 |

## | 0.079 | 0.243 | |

## ----------------|----------------|----------------|----------------|

## Asia | 36 | 9 | 45 |

## | 0.404 | 0.129 | |

## ----------------|----------------|----------------|----------------|

## Europe | 3 | 33 | 36 |

## | 0.034 | 0.471 | |

## ----------------|----------------|----------------|----------------|

## Oceania | 2 | 3 | 5 |

## | 0.022 | 0.043 | |

## ----------------|----------------|----------------|----------------|

## Column Total | 89 | 70 | 159 |

## | 0.560 | 0.440 | |

## ----------------|----------------|----------------|----------------|

##

##

We now observe that 46.1 percent of the world’s non-democracies reside in Africa
and that 47.1 percent of the world’s democracies reside in Europe.

To add proportions that take the row totals as their base, we change prop.r

= FALSE to prop.r = TRUE.
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library(gmodels)

CrossTable(world$continent, world$demo, digits = 3, expected = FALSE,

prop.r = TRUE, prop.c = FALSE, prop.t = FALSE, prop.chisq = FALSE)

##

##

## Cell Contents

## |-------------------------|

## | N |

## | N / Row Total |

## |-------------------------|

##

##

## Total Observations in Table: 159

##

##

## | world$demo

## world$continent | Non-Democratic | Democratic | Row Total |

## ----------------|----------------|----------------|----------------|

## Africa | 41 | 8 | 49 |

## | 0.837 | 0.163 | 0.308 |

## ----------------|----------------|----------------|----------------|

## Americas | 7 | 17 | 24 |

## | 0.292 | 0.708 | 0.151 |

## ----------------|----------------|----------------|----------------|

## Asia | 36 | 9 | 45 |

## | 0.800 | 0.200 | 0.283 |

## ----------------|----------------|----------------|----------------|

## Europe | 3 | 33 | 36 |

## | 0.083 | 0.917 | 0.226 |

## ----------------|----------------|----------------|----------------|

## Oceania | 2 | 3 | 5 |

## | 0.400 | 0.600 | 0.031 |

## ----------------|----------------|----------------|----------------|

## Column Total | 89 | 70 | 159 |

## ----------------|----------------|----------------|----------------|

##

##

We now see, for example, that 83.7 percent of the African countries are non-
democratic and that 91.7 percent of Europe is democratic.

6.2.2 Multiway Tables

On occasion, we may want to tabulate multipl variables. For this purpose, we
recommend using the xtabs command. Imagine that we want to explore the
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relationship between human development, democracy, and political stability.
We dichotomize human development using the median and political stability at
the 50 percentile mark. Let’s start by performing these operations.

lbl <- c("Low", "High")

world$dihdi <- cut(world$hdi, breaks = c(0, median(world$hdi,

na.rm = TRUE), 1), labels = lbl, right = FALSE)

table(world$dihdi)

##

## Low High

## 93 94

world$distab <- cut(world$polstab, breaks = c(0, 50, 101), labels = lbl,

right = FALSE)

table(world$distab)

##

## Low High

## 105 106

Having created the variables, we can now set up the table:

xtabs(~distab + demo + dihdi, data = world)

## , , dihdi = Low

##

## demo

## distab Non-Democratic Democratic

## Low 52 13

## High 8 7

##

## , , dihdi = High

##

## demo

## distab Non-Democratic Democratic

## Low 21 10

## High 7 38

We see that we obtain two 2×2 sub-tables, one for low and one for high levels of
HDI. We see, for example, that 52 non-democratic, low HDI countries suffer from
low political stability. Thirty-eight democratic, high HDI countries have high
political stability, etc. We can also present the frequencies a bit differently—and
many would say better—by using the ftable command:
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mytable <- xtabs(~distab + demo + dihdi, data = world)

ftable(mytable)

## dihdi Low High

## distab demo

## Low Non-Democratic 52 21

## Democratic 13 10

## High Non-Democratic 8 7

## Democratic 7 38

This provides exactly the same information, albeit in a single table.

One might want to compute proportions. For example, one might be inter-
ested in determining what portion of non-democratic, low HDI countries suffer
from low political stability. Here, R’s prop.table command comes in handy.
We want to apply this to each of the sub-tables created by xtabs. Specifically,

prop.table(mytable[, , 1], 2)

## demo

## distab Non-Democratic Democratic

## Low 0.8666667 0.65

## High 0.1333333 0.35

prop.table(mytable[, , 2], 2)

## demo

## distab Non-Democratic Democratic

## Low 0.75 0.2083333

## High 0.25 0.7916667

The command turns an existing table into a table of proportions. By adding
[,,1] we select the first sub-table (the one for low HDI); by adding [,,2] we
select the second sub-table (the one for high HDI). The prop.table command
can use various bases of proportions. By specifying 2 at the end of the command,
we ensure that column totals are used as the base. Had we specified 1, then the
row totals are used as the base. Finally, no specification means that n serves as
the base of the proportions.

Substantively, the results show that roughly 87 percent of the non-democratic,
low HDI countries suffer from low political stability. For democratic, low HDI
countries, this percentage is 65. The results also show that 75 percent of the
non-democratic, high HDI countries suffer from low political stability. Finally,
only 21 percent of democratic, high HDI countries suffer from low political sta-
bility. These results suggest that the combination of democracy and high HDI
seems to be the best guarantee for political stability.
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6.3 Relative Risk and the Odds Ratio

6.3.1 The Relative Risk Ratio

Imagine we want to infer the risk of political instability from the status of a
country qua democracy. More precisely, we want to know if non-democracies
have a higher risk of being unstable than democracies. To answer this question,
we need to compute the relative risk ratio. Although it is not hard to do this
by hand, it turns out that the epitools library will do the computation for us.
The syntax is as follows:

library(epitools)

epitab(world$demo, world$distab, method = "riskratio", rev = "both")

## $tab

## Outcome

## Predictor High p0 Low p1 riskratio

## Democratic 46 0.6571429 24 0.3428571 1.000000

## Non-Democratic 15 0.1685393 74 0.8314607 2.425094

## Outcome

## Predictor lower upper p.value

## Democratic NA NA NA

## Non-Democratic 1.730364 3.398752 4.153456e-10

##

## $measure

## [1] "wald"

##

## $conf.level

## [1] 0.95

##

## $pvalue

## [1] "fisher.exact"

Before interpreting the results, let us dissect the syntax. The epitab command
generates a contingency table, in this case of demo as the row variable represent-
ing the risk factor, and distab as the column variable representing the outcome.
The method option allows us to select the relative risk versus the odds ratio,
among other things. Finally, the rev option allows us to change around the
rows and/or columns of the table. Here we do both. If we ask R to construct a
table of the two variables, we get2

table(world$demo, world$distab)

##

## Low High

2Here you see the use of the table command for creating contingency tables.
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## Non-Democratic 74 15

## Democratic 24 46

The epitools library would now define the outcome of interest in terms of
the second column, which is high political stability. However, we are interested
in low stability as the outcome, which requires that we reverse the order of
the columns. In terms of the row variable, epitools would define the relative
risk ratio comparing the second to the first row. But this means we would
compare democracies to non-democracies, whereas we would like to reverse the
comparison. To accomplish this, we reverse the order of the rows as well.

Looking at the epitable output, for now only columns 1-6 are of interest.3

Column 1 shows the levels of the risk factor. Column 2 shows the number of
cases where low stability is absent, i.e., where political stability is high, for both
levels of the risk factor. Column 3 shows the proportion of democracies and
non-democracies, respectively, where the outcome is negative, i.e., low stability
is absent. Column 4 shows the number of cases where low stability is present,
doing this for both levels of the risk factor. Column 5 shows the proportion of
democracies and non-democracies, respectively, where the outcome is positive,
i.e, stability is low. Finally, column 6 shows the relative risk ratio. To ascertain
the relative risk ratio, we look only at the second row, the one corresponding
to non-democracies. We see that the relative risk ratio is approximately 2.425,
which is equal to the ratio of p1 for non-democracies and democracies. We
interpret this as follows: compared to democracies, non-democracies have a
roughly 2.425 higher risk of having low political stability.4

6.3.2 The Odds Ratio

The epitable command can also be used to compute the odds ratio. The
only change in the syntax that is required is to replace method = "riskratio"

with method = "oddsratio". Thus, to compute the odds ratio for low political
stability we issue the following syntax:

library(epitools)

epitab(world$demo, world$distab, method = "oddsratio", rev = "both")

## $tab

## Outcome

## Predictor High p0 Low p1 oddsratio

## Democratic 46 0.7540984 24 0.244898 1.000000

## Non-Democratic 15 0.2459016 74 0.755102 9.455556

## Outcome

## Predictor lower upper p.value

3The remaining columns are relevant for testing the statistical significance of the relative
risk ratio, a topic we shall discuss later in this course.

4The relative risk ratio shown in the first row is uninteresting because it is based on a
comparison of democracies with themselves.
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## Democratic NA NA NA

## Non-Democratic 4.499285 19.8715 4.153456e-10

##

## $measure

## [1] "wald"

##

## $conf.level

## [1] 0.95

##

## $pvalue

## [1] "fisher.exact"

Again, only columns 1-6 from the output are relevant for now. Key to the
interpretation is column 6, which shows the odds ratio to be roughly 9.456.
Thus, the odds of low compared to high political stability are almost 9.5 times
higher for non-democracies than they are for democracies.5

6.4 Measures of Association for Nominal Vari-
ables

6.4.1 Cramér’s V

Earlier, we cross-tabulated continent with democracy. In this section, we shall
compute measures of association between these two variables. We begin by
treating the two variables symmetrically, so that we do not make a distinction
between a dependent and an independent variable. For this purpose Cramér’s
V is an appropriate choice. In R, V can be computed using the vcd library.

library(vcd)

## Loading required package: grid

##

## Attaching package: ’vcd’

##

## The following object is masked from ’package:epitools’:

##

## oddsratio

mytable <- table(world$continent, world$demo)

assocstats(mytable)

## X^2 df P(> X^2)

## Likelihood Ratio 73.137 4 4.8850e-15

5Compared to the relative risk ratio, p0 and p1 are now not computed within rows (using
row totals as the base) but within columns (using column totals as the base).
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## Pearson 66.470 4 1.2612e-13

##

## Phi-Coefficient : NA

## Contingency Coeff.: 0.543

## Cramer's V : 0.647

We first create a table—mytable—and then apply the assocstats function to
it. This generates a large number of statistics, including the Pearson chi-squared
statistic that serves as the basis of V . The statistic that interests us, however, is
the last one. We see that Cramér’s V is 0.647, which can be considered evidence
of a strong association between the two variables.

6.4.2 Goodman and Kruskal’s λ

Now let us analyze the relationship between continent and democracy from a
slightly different perspective. Specifically, we want to predict the status qua
democracy of a country based on the continent in which it is located. For
this purpose, we can use Goodman and Kruskal’s λ. The computation of this
statistic can be carried out using the rapport library.

library(rapport)

## Loading required package: lattice

## Loading required package: plyr

## ----------------------------------------------------------

## You have loaded plyr after dplyr - this is likely to cause problems.

## If you need functions from both plyr and dplyr, please load plyr

first, then dplyr:

## library(plyr); library(dplyr)

## ----------------------------------------------------------

##

## Attaching package: ’plyr’

##

## The following objects are masked from ’package:dplyr’:

##

## arrange, count, desc, failwith, id, mutate,

## rename, summarise, summarize

##

## Loading required package: pander

## Loading required package: yaml

##

## Attaching package: ’rapport’

##

## The following objects are masked from ’package:moments’:

##

## kurtosis, skewness
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mytable <- table(world$continent, world$demo)

lambda.test(mytable, direction = 1)

## [1] 0.5857143

The option direction declares the independent variable. By specifying 1, the
row variable is designated as the independent variable. By designating 2, the
column variable is designated as the independent variable. Finally, by designat-
ing 0, both versions of λ are computed. Here, we have chosen the row variable
as the independent variable, as we want to use continent to predict democracy.
The result shows that knowing a country’s continent improves the prediction of
its democratic status by 58.6 percent relative to not knowing this information.
This suggests a strong relationship between democracy and continent. This is
the proportional reduction in error (PRE).

If we had wanted to predict a country’s continent from whether or not it is
a democracy, then we would have issued the following syntax:

library(rapport)

lambda.test(mytable, direction = 2)

## [1] 0.2272727

This result is a bit weaker, with the PRE being only 0.227.

6.5 Measures of Association for Ordinal Vari-
ables

6.5.1 Goodman and Kruskal’s γ

Imagine we are interested in the relationship between human development and
democracy. We employ the categorization of the HDI proposed by the United
Nations Development Programme (UNDP) and the categorization of the democ-
racy index used by the Economist Intelligence Unit, which turns both variables
into ordinal scales. As we discussed in Chapter 3, the UNDP distinguishes be-
tween low, medium, high, and very high human development. We can generate
these categories as follows.

world$f.hdi <- cut(world$hdi, breaks = c(-Inf, 0.55, 0.7, 0.8,

Inf), right = TRUE, labels = c("Low Dev.", "Medium Dev.",

"High Human Dev.", "Very High Human Dev."))

The Economist Intelligence Unit distinguishes between full democracies, flawed
democracies, hybrid regimes, and authoritarian regimes, using cut-offs on demindx

of 8, 6, and 4, respectively. We can generate these categories using the following
syntax.
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world$f.demindx <- cut(world$demindx, breaks = c(-Inf, 4, 6,

8, Inf), right = FALSE, labels = c("Authoritarian", "Hybrid",

"Flawed Dem.", "Full Dem."))

The contingency table of the two variables can be obtained in the usual manner.

mytable <- table(world$f.hdi, world$f.demindx)

mytable

##

## Authoritarian Hybrid Flawed Dem.

## Low Dev. 24 14 4

## Medium Dev. 10 11 16

## High Human Dev. 10 13 14

## Very High Human Dev. 6 1 17

##

## Full Dem.

## Low Dev. 0

## Medium Dev. 0

## High Human Dev. 3

## Very High Human Dev. 22

We now proceed to compute Goodman and Kruskal’s γ, in order to measure
the association between the two variables. For this, we use the PResiduals

library, which contains the GKGamma function.6

library(PResiduals)

GKGamma(mytable)

## $scon

## [1] 6367

##

## $sdis

## [1] 1472

##

## $gamma

## [1] 0.6244419

We observe that γ is equal to 0.624 for the data at hand. This suggests a strong
positive correlation between human development and the level of democracy.

6The libraries MESS and vcdExtra also contain functions for computing Goodman and
Kruskal’s γ. These are good when the goal is to engage in hypothesis testing. The advantage
of the current function is that it shows the concordant and discordant pairs automatically.
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6.5.2 Spearmans’s ρ

With ordinal dependent variables, one can also calculate Spearman’s ρ, the
rank correlation coefficient proposed by Spearman. Returning to the original
measurements of human development and the democracy index. Doing so is
extremely easy, except that we have to use a slightly different syntax to remove
missing values.

cor(world$hdi, world$demindx, use = "complete.obs",

method = "spearman")

## [1] 0.6432357

Here, use = "complete.obs" means that we only use those country cases for
which we have data on the democracy index and the HDI. We see that Spear-
man’s ρ is 0.643, which indicates a strong positive association between the level
of human development and the level of democracy.

6.6 Conclusions

R offers a number of very nice features for analyzing contingency tables. In
the exercises you will be able to practice those features yourself. Remember
that tabular analysis is often a useful starting point for analyzing relationships
between variables. So you should feel free to tabulate early and often.

6.7 Exercises

(1) Consider the world economic, political, and social indicator data. Create
a variable containing the quintiles on political stability. You could label these as
“very low,” “low,” “moderate,” “high,” and “very high.” Then create a twoway
table with continent as the column variable and the stability quintiles as the
row variable. The table should display the frequencies, as well as the column
proportions. Interpret the results.

(2) Replicate the analysis from Section 6.2.2, now substituting a dichotomous
version of corruption in lieu of the dichotomous version of political stability.
Interpret the results.

(3) Continuing with the dichotomous corruption measure, let us turn this into
the outcome variable and let us designate the dichotomous version of HDI as
the risk factor. What is the relative risk of low-HDI countries scoring high
on corruption compared to high-HDI countries? How would you interpret this
result?
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(4) What is odds ratio for high versus low corruption when we compare high-
HDI to low-HDI countries? How would you interpret this result?

(5) Compute and interpret Cramér’s V for the twoway table between high and
low HDI and high and low corruption.

(6) Compute and interpret Goodman and Kruskal’s γ for a table that uses the
4-category HDI measure of the United Nations Development Programme and
the democracy indicator derived from Polity.

(7) Take the 4-category HDI measure and tabulate it against the political sta-
bility quintiles generated in question (1). Now compute and interpret Goodman
and Kruska’s γ.

(8) Compute and interpret Spearman’s ρ for HDI by corruption.
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Chapter 7

Correlation and Regression

In this chapter, we shall take a look at association for interval and ratio scales.
We begin by discussing scatter plots as a tool for visualizing relationships be-
tween variables. We then move onto a discussion of covariance and correlation.
We conclude by discussing simple regression analysis in R.

7.1 Required Packages

For the exercises in this chapter, you will need to install and activate the fol-
lowing library:

• GGally

• ggExtra

• ggplot2

7.2 Scatter Plots

One of the best ways to explore the association between interval/ratio variables
is to create a scatter plot. In its most basic form, a scatter plot shows the
combined values of two variables in a Cartesian coordinate system. We can
add various bells and whistles to the basic scatter plot, as we shall show in this
section. Later in the chapter, we shall show as well how one can add information
about correlation or a regression line to the scatter plot.

7.2.1 Basic Scatter Plots

Let us consider the relationship between the human development index (HDI)
and political stability. We can visualize this relationship by creating a scatter
plot using ggplot2.

95
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Figure 7.1: Scatter Plot of Human Development and Political Stability
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Note: Each point represents the value on HDI and political stability for a particular country.

library(foreign)

library(ggplot2)

world <- read.dta("world indicators.dta")

ggplot(world, aes(x = hdi, y = polstab)) +

geom_point() +

xlab("Human Development Index") + ylab("Political Stability")

This produces Figure 7.1. We observe that low values of HDI tend to go to-
gether with low values of political stability, and that high values of HDI tend to
occur with high values of stability. This is indicative of a positive relationship,
although it is far from perfect. The last conclusion follows from the fact that
the points do not neatly fall on a straight line but, rather, are scattered about
such an, as of yet imaginary, line.

7.2.2 Jittered Scatter Plots

Now let us use a similar procedure to plot HDI against politydem, the Polity
democracy score. The result is shown in Figure 7.2.1 This graph, however, does

1We do not repeat the syntax, since it is essentially the same as that used for Figure 7.1.
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Figure 7.2: Scatter Plot of Human Development and the Polity Democracy
Score
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Note: This graph suffers from over-plotting.

not look as nice as Figure 7.1. The reason is that there are only 11 unique
democracy scores, causing the points on the vertical axis to be aligned in a
peculiar way and producing a problem of over-plotting. Over-plotting arises
when dots are put (nearly) on top of each other, so that it becomes difficult to
tell how many cases (e.g., countries) are situated at a specific location.

The solution is to add a small amount of random noise—so-called jitter—to
each unit, so that the points can be more easily distinguished. One can add
jitter along the horizontal axis, the vertical axis, or both. In our case, the
problem is limited to the vertical axis, and we shall add jitter only along this
dimension.

library(ggplot2)

ggplot(world, aes(x = hdi, y = politydem)) +

geom_point(position = position_jitter(w = 0, h = .5)) +

xlab("Human Development Index") +

ylab("Polity Democracy Score")

The result is shown in Figure 7.3. Before interpreting the plot, we should com-
ment briefly on the syntax. The position jitter option allows us to specify
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Figure 7.3: Jittered Scatter Plot of Human Development and the Polity Democ-
racy Score

0.0

2.5

5.0

7.5

10.0

0.4 0.6 0.8
Human Development Index

 P
ol

ity
 D

em
oc

ra
cy

 S
co

re

Note: Jittering has been applied to the vertical axis of the plot.

the nature and the degree of jittering. It has two arguments: width (w) and
height (h). Width influences the degree of jittering along the horizontal axis and
has been set to 0 here. Height influences the degree of jittering along the vertical
axis and has been set to .5. Both height and width are stated as a proportion
of the resolution of the plot, which roughly corresponds to the smallest distance
between any two elements in a vector. Both the horizontal and vertical axis
correspond to vectors of values of a variable and the smallest distance between
any two units on a given vector is taken to determine the amount of jittering
that is applied. The default is 40 percent on both axes. The effect of jittering
is that Figure 7.3 now looks a lot more like Figure 7.1 than did Figure 7.2. In
substantive terms, it appears that there is something of a positive relationship
between human development and democracy. However, the relationship does
not appear to be particularly strong due to the considerable scatter we observe
in Figure 7.3.

7.2.3 Adding Marginal Distributions

Useful as (jittered) scatter plots are, it would be nice to add information about
the marginal distributions of the variables in the plot. There are several ways
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Figure 7.4: Rugged Scatter Plot of Human Development and Political Stability
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Note: The tickmarks at the margins reflect the distribution of the human development index
and political stability.

of doing this. First, one can apply so-called rugging. A rug is a set of tickmarks
that appear on the axis of a plot to indicate the distribution of a variable. We
illustrate it here for the earlier scatter plot of human development and political
stability.

library(ggplot2)

ggplot(world, aes(x = hdi, y = polstab)) +

geom_point() +

geom_rug(col = "blue", alpha = .1) +

xlab("Human Development Index") +

ylab("Political Stability")

The result is shown in Figure 7.4.2

An alternative approach is to provide complete histograms of the marginal
distributions. For this, we like to use the ggExtra package.

2The parameter alpha controls the transparency of the rug. It is set to a low value so as
not to distract from the main act on the plot, which is the scatter itself.
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Figure 7.5: Rugged Scatter Plot of Human Development and Political Stability
with Histograms
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Note: The histograms in the margins show the distributions of human development and
political stability.

library(ggExtra)

p <- ggplot(world, aes(x = hdi, y = polstab)) +

geom_point() +

xlab("Human Development Index") +

ylab("Political Stability") +

theme_classic()

ggExtra::ggMarginal(p, type = "histogram")

The result is shown in Figure 7.5.3 By specifying type = "density", you obtain
density plots in the margins in lieu of histograms. Parenthetically, a similar kind
of display can be obtained using the GGally library, which we shall illustrate
later in this chapter.

3The inclusion of theme classic means that the background is white and the gridlines
have been removed. This argument is optional.



7.2. SCATTER PLOTS 101

7.2.4 Facetted Scatter Plots

As we did with density plots, it is possible to apply facetting in a scatter plot.
We illustrate this here for the relationship between human development and
political stability. The facetting that we apply is at the level of the continents.
If we want to create separate graphs for each continent.

ggplot(world, aes(x = hdi, y = polstab)) +

geom_point() +

facet_wrap(~continent) +

xlab("Human Development Index") +

ylab("Political Stability")

We see that we have again used the facet wrap option, which we introduced
in Chapter 4. The result is shown in Figure 7.6. From a substantive vantage
point, we see that the relationship between human development and political
stability is positive on every continent. However, the degree of scatter varies
greatly. The clustering of points is quite tight in Europe and considerably less
so in Africa, which suggests a much stronger relationship in Europe than in
Africa. The other continents are situated in between these extremes.

We strongly prefer facetting to demonstrate group differences such as those
between continents. However, it is also possible to show differences of this nature
using color coding within a single scatter plot. This can be accomplished using
the following syntax:

ggplot(world, aes(x = hdi, y = polstab)) +

geom_point(aes(color = factor(continent))) +

xlab("Human Development Index") +

ylab("Political Stability") +

scale_color_discrete(name = "Continent")

The result is shown in Figure 7.7. Although the colors make for an artistic
scatter plot, I hope you will agree that its much harder to read than Figure 7.6.
The same is true of a variant that uses different shapes for different continents:

ggplot(world, aes(x = hdi, y = polstab)) +

geom_+point(aes(shape = factor(continent))) +

xlab("Human Development Index") +

ylab("Political Stability") +

scale_shape_discrete(name = "Continent")

This rendition is shown in Figure 7.8.
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Figure 7.6: Facetted Scatter Plot of Human Development and Political Stability
with Histograms
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Note: Facetting is done by continent.
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Figure 7.7: Scatter Plot of Human Development and Political Stability with
Histograms Using Different Colors for Each Continent
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Figure 7.8: Scatter Plot of Human Development and Political Stability with
Histograms Using Different Shapes for Each Continent
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7.3 Measures of Association

7.3.1 Covariance

To obtain the covariance between two interval/ratio scales, we can utilize the
cov function. If we want to remove missing values, then the syntax is:

cov(world$hdi, world$polstab, use = "complete.obs")

## [1] 2.651434

This gives the covariance between the human development index and political
stability. The argument complete.obs means that we only use those units for
which we have data on both variables. We see that the covariance is positive,
suggesting a positive linear association, just as we discussed when considering
Figure 7.1. This means that increases in the human development index tend to
be associated with increases in political stability.

The cov function can be expanded to consider more than two variables. In
this case, it will produce a matrix of all pairwise covariances. For example,

world.sub <- select(world, hdi, polstab, politydem)

S <- cov(world.sub, use = "complete.obs")

S

## hdi polstab politydem

## hdi 0.02580682 2.529529 0.2404437

## polstab 2.52952851 667.051084 41.5083849

## politydem 0.24044372 41.508385 13.8992088

generates a 3×3 matrix (see below) of covariances between the human develop-
ment index, political stability, and the Polity democracy score. Those variables
have first been selected from the original data frame world and placed into their
own data frame world.sub (see Chapter 3).

A matrix is a rectangular array consisting of rows and columns. In our case,
we have three rows and columns, corresponding to the number of variables we
are looking at. Where a row and a column meet, we have a cell. In our case, the
cell contents are numbers corresponding to covariances. In all, we have 3×3 = 9
cells/covariances. Their meaning is as follows.

• The cell in the first row and first column contains the value 0.026 (ap-
proximately). This is the covariance of the human development index
with itself, which is the same as the variance of the human development
index. (You can verify this by evaluating the var function.)

• The cell in the second row and the first column contains the value 2.53
(approximately). This is the covariance between the human development
index and political stability. Note that this is the same value as that
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Table 7.1: Structure of a Covariance Matrix with K Variables

X1 X2 X3 · · · XK

X1 Var(X1) Cov(X1, X2) Cov(X1, X3) · · · Cov(X1, XK)
X2 Cov(X1, X2) Var(X2) Cov(X2, X3) · · · Cov(X2, XK)
X3 Cov(X3, X1) Cov(X2, X3) Var(X3) · · · Cov(X3, XK)
...

...
...

...
. . .

...
XK Cov(XK , X1) Cov(XK , X2) Cov(XK , X3) · · · Var(XK)

found in the first row and second column. We observe that the covariance
is positive, as we already saw.

• The cell in the second row and the second column contains the value
667.051n(approximately). This is the covariance of political stability with
itself, which is the same as the variance of political stability. We see that
the relationship between the two variables is positive.

• The cell in the third row and the first column contains the value 0.24
(approximately), which is the covariance between the Polity democracy
score and the human development index. This is the same value as that
found in the first row and third column. It suggests a positive relationship
between the two variables, such that high values of human development
tend to go together with high values of democracy (and vice versa).

• The cell in the third row and the second column contains the value 41.508
(approximately). This is the covariance between political stability and
the Polity democracy score. This is the same value as that found in the
second row and third column. Since the covariance is positive, we know
that high democracy scores tend to occur along with political stability
(and vice versa).

• The cell in the third row and third column contains the value 13.899
(approximately). This is the covariance of the Polity democracy score
with itself, i.e., the variance.

In general, covariance matrices produced by cov take the form shown in Table
7.1. We see that the diagonal elements contain variances and that the off-
diagonal elements are covariances.

In the previous analysis, we asked the covariances to be computed on com-
plete cases only. In the context of an analysis of three variables, this means that
a country cannot have missing values on any of the three variables; we call this
listwise deletion. Thus, when we compute the covariance between the human
development index and political stability, there cannot be missingness on those
variables but—and this is important—also not on the Polity democracy score.
This is the default approach in political science, as it ensures that the same
number of observations is used throughout.
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It is possible, however, to relax this requirement. Specifically, we can issue
the following syntax:

cov(world.sub, use = "pairwise.complete.obs")

## hdi polstab politydem

## hdi 0.02435892 2.651434 0.2404437

## polstab 2.65143369 850.104446 41.7455087

## politydem 0.24044372 41.745509 13.9076433

Now, the covariance between the human development index and political stabil-
ity is based on cases that have no missing values on those variables. However,
it does not matter if those cases are missing on the Polity democracy score.
We call this pairwise deletion. Missingness on that variable becomes relevant
only if we want to obtain its variance or covariance with other variables. The
method has two major drawbacks. First, in R it is extremely difficult to un-
cover the sample size on which each variance/covariance is based. Second, and
more important, when covariances are based on different samples, it becomes
dangerous to compare them. If the goal is to compare different covariances, we
recommend always that you use the complete.obs option.

7.3.2 Correlation

To compute the Pearson product-moment correlation, one can proceed in nearly
the same way as with the covariance. For example, to compute the correlation
between the human development index and political stability, the following syn-
tax suffices.

cor(world$hdi, world$polstab, use = "complete.obs")

## [1] 0.601534

This is the same syntax that we used to compute Spearman’s ρ in the previous
chapter. Only there, we specified method = "spearman", whereas we do not
bother to specify a method here. The reason is that the cor function computes
the Pearson product-moment correlation by default; one is required to use the
method option only if one wishes to compute another type of correlation.

Just as with covariances, we can compute a correlation matrix of many
variables. For example,

R <- cor(world.sub, use = "complete.obs")

R

## hdi polstab politydem

## hdi 1.0000000 0.6096672 0.4014682

## polstab 0.6096672 1.0000000 0.4310833

## politydem 0.4014682 0.4310833 1.0000000
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gives the correlation matrix for human development, political stability, and
democracy using listwise deletion. The correlation matrix under pairwise dele-
tion is given by

R <- cor(world.sub, use = "pairwise.complete.obs")

R

## hdi polstab politydem

## hdi 1.0000000 0.6015340 0.4014682

## polstab 0.6015340 1.0000000 0.4313486

## politydem 0.4014682 0.4313486 1.0000000

As before, this is a 3× 3 matrix. The interpretation of the elements of this
matrix is as follows.

• The element that makes up the first row and first column is the correlation
of the Human Development Index with itself, which is by definition 1.

• The element that makes up the second row and the first column is the
correlation of the Human Development Index with political stability. This
correlation is 0.602 and can be considered a strong positive correlation.
The same correlation can be found in the first row and second column of
the correlation matrix.

• The element that makes up the second row and the second column is the
correlation of political stability with itself, which is by definition 1.

• The element that makes up the third row and the first column is the corre-
lation between the Human Development Index and the Polity democracy
score. This correlation is 0.401 and can be considered a moderate positive
correlation. The same correlation can be found in the first row and the
third column of the correlation matrix.

• The element that makes up the third row and the second column is the
correlation between political stability and the Polity democracy score.
This correlation is 0.431 and can again be considered a moderate positive
correlation. The same correlation can be found in the second row and the
third column of the correlation matrix.

• The element that makes up the third row and the third column is the
correlation of the Polity democracy score with itself. As always, this
correlation is 1 by definition.

In general, we see that the correlation matrix has a structure very similar to
Table 7.1, with the peculiarity that the diagonal elements are all 1 and that the
off-diagonal elements represent correlations instead of covariances.
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Figure 7.9: Human Development and Political Stability
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Note: The upper-left quadrant shows the density of the human development index (HDI).
The upper-right quadrant shows the correlation between the HDI and political stability. The
lower-left quadrant gives the scatter plot of the HDI and political stability. The lower-right
quadrant shows the density of political stability.
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7.3.3 Showing Correlations in a Scatter Plot

It would be nice to show the correlation along with a scatter plot of the data.
One of the easiest ways to do this is to use the newly developed GGally library.
For example, to create Figure 7.9, the following syntax can be used.

library(dplyr)

library(GGally)

world.sub <- select(world, hdi, polstab)

lbl <- c("HDI", "Political Stability")

ggpairs(world.sub, columns = 1:2, columnLabels = lbl)

This figure clearly shows that the correlation between the human development
index and political stability. In addition, it provides the scatter plot between
those variables, as well as their densities. Hence, a plot of this nature provides
a great deal of information.

The ggpairs function does not limit us to creating plots with just two
variables. If we issue the following syntax

library(dplyr)

library(GGally)

world.sub <- select(world, hdi, polstab, politydem)

lbl <- c("HDI", "Political Stability", "Democracy")

ggpairs(world.sub, columns = 1:3, columnLabels = lbl)

then we obtain Figure 7.10. This kind of figure is known as a matrix scatter
plot and is an extremely useful tool for exploring relationships between variables
that theoretically should hang together.

7.4 Simple Regression

7.4.1 Fitting a Simple Regression Model

Imagine that we are interested in predicting the level of political stability in a
country based on the level of human development in that country. Since political
stability is measured on a ratio scale, we can perform a regression analysis. This
amounts to obtaining the line that best fits the scatter plot between the two
variables. Fitting a regression is extremely easy in R:

fit <- lm(polstab ~ hdi, world)

summary(fit)

##

## Call:

## lm(formula = polstab ~ hdi, data = world)

##
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Figure 7.10: Human Development, Political Stability, and Democracy around
the World
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Note: The plot contains the following elements: (1) top row, left is the density of the human
development index (HDI); (2) top row, center is the correlation between the HDI and political
stability; (3) top row, right is the correlation between the HDI and democracy; (4) middle row,
left is the scatter plot between the HDI and political stability; (5) middle row, center is the
density if political stability; (6) middle row, right is the correlation between political stability
and democracy; (7) bottom row, left is the scatter plot between the HDI and democracy;
(8) bottom row, center is the scatter plot between political stability and democracy; and (9)
bottom row, right is the density for democracy.
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## Residuals:

## Min 1Q Median 3Q Max

## -53.429 -16.547 1.539 17.073 55.158

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -27.229 7.472 -3.644 0.000349 ***

## hdi 108.849 10.628 10.242 < 2e-16 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 22.62 on 185 degrees of freedom

## (33 observations deleted due to missingness)

## Multiple R-squared: 0.3618,Adjusted R-squared: 0.3584

## F-statistic: 104.9 on 1 and 185 DF, p-value: < 2.2e-16

Here lm stands for linear model and the dependent and independent variable
are separated via a tilde.

Many of the results shown in the output are still too advanced to discuss at
this stage. However, we are equipped to interpret two elements of the output:
(1) the column labeled “Estimate,” and (2) the “multiple R-squared.” The
estimate labeled “(Intercept)” is −27.229; this is the intercept of the linear
regression equation. The estimate labeled “hdi” is 108.849; this is the slope of
the linear regression equation. The regression equation may thus be written as

̂Stable = −27.229 + 108.849×HDI

This means that a unit increase in the human development index is expected to
increase political stability by 108.849 units. You should keep in mind—this is
where descriptive statistics are invaluable—that the HDI has an empirical range
that falls well short of a full unit. Perhaps, then, it is better to look at the effect
of an increase of a tenth of a unit in human development. This is expected to
increase political stability by one tenth times 108.849, or 10.885. Given that
the political stability scale ranges between 0 and 100, this can be considered a
sizable effect.

The intercept of the regression equation is −27.229. This is the expected
level of political stability when the human development index is 0. It is not
particularly useful to offer this interpretation, however, because the human de-
velopment index is nowhere 0.

Turning to the multiple R-squared, we see that it is approximately equal
to 0.362. This means that human development explains about 36.2 percent of
the variance in political stability. This is quite reasonable, given that we know
political stability to depend on a lot more than human development alone.
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Figure 7.11: Regressing Political Stability onto Human Development
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Note: The blue line is the linear regression line.

7.4.2 Graphing the Regression Line

It is possible to visualize the regression line in a scatter plot using ggplot2.
The syntax is as follows.

library(ggplot2)

ggplot(world, aes(x = hdi, y = polstab)) +

geom_point() +

geom_smooth(method = "lm", se = FALSE, size = 1.5) +

xlab("HDI") + ylab("Political Stability")

The result is shown in Figure 7.11. The key function that was used to create the
regression line is geom smooth, which receives three arguments. First, we set
the method to lm, which we encountered before. Second, se is set to FALSE so
that only the regression line is being displayed. Finally, size = 1.5 draws the
regression line at a width of 1.5 times the standard line size, so that it stands
out a bit more.

We can add some annotation to the scatter plot, so that the equation for
the regression line and the R-squared are depicted as well. This requires that
you write the following function:



114 CHAPTER 7. CORRELATION AND REGRESSION

lm_eqn = function(world) {
m = lm(polstab ~ hdi, world);

eq <- substitute(italic(Stability) == a + b %.%

italic(HDI)*","~~

italic(R)^2~"="~r2,

list(a = format(coef(m)[1], digits = 3),

b = format(coef(m)[2], digits = 4),

r2 = format(summary(m)$r.squared,

digits = 3)))

as.character(as.expression(eq));

}

In a next step, we now create the plot:

library(ggplot2)

p <- ggplot(world, aes(x = hdi, y = polstab)) + geom_point() +

geom_smooth(method = "lm", se = FALSE, size = 1.5) + xlab("HDI") +

ylab("Political Stability")

p1 <- p + geom_text(x = 0.6, y = 100, label = lm_eqn(world),

parse = TRUE)

p1

The resulting graph is shown in Figure 7.12.

7.5 Exercises

(1) Consider the data in studidata.Rda. This data set contains the variables
height and weight, which capture students’ self-reported heights and weights,
respectively. Construct a scatter plot of the two variables. Comment on whether
the pattern reflects weak or strong association and in which direction this goes.
If there is a relationship, does it appear to be linear?

(2) Redo the scatter plot from problem (1), now facetting on a student’s
sex (contained in the variable man). Are there any obvious differences in the
relationship between height and weight between men and women?

(3) Compute the covariance and correlation between height and weight. In-
terpret the results.

(4) Repeat the computation of the correlation separately for men and women.
Does it look like the relationship between the two variables differs between men
and women?

(5) Run a regression of weight on height. Interpret the slope coefficient.
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Figure 7.12: Regressing Political Stability onto Human Development Once More
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Note: The blue line is the linear regression line. The text shows the regression equation and
multiple R-squared.
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(6) Does it make sense to interpret the intercept of the regression you just
ran? Why does it (or not) make sense?

(7) How much variance does height explain? Would you consider this a lot or
a little?

(8) Run separate regressions for men and women. What differences do you
observe?
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Probability Theory

117





Chapter 8

Working With Probability
Distributions

Probabilities are the glue that connect statistical inference and descriptive statis-
tics. As such, it is of great importance that one learns how to work with them.
In this chapter, we shall see how R can be enticed to serve as a probability
calculator and random number generator. We start by illustrating this for the
uniform distribution. Next, we introduce a number of useful statistical distri-
butions and their relevant R syntax.

8.1 Required Packages

For this chapter, you need to download and install two packages:

• actuar

• moments

8.2 The Uniform Distribution

8.2.1 The Continuous Uniform Distribution

Imagine that the random variable X is distributed normally over the interval
[1, 6]; we write X ∼ U(1, 6). Figure 8.1 shows the probability density function
(PDF) of the random variable. The question before us is how one can tell R to
work with this distribution.

Declaring the Probability Density Function To declare the PDF in R,
one first has to specify its support. Recall that the support is that range of
values of the random variable for which the PDF is non-zero. In our case, this
is the range between 1 and 6. We can specify this using

119
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Figure 8.1: Uniform Probability Density Function
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Note: The graph shows the continuous uniform distribution for a random variable that takes
on values between 1 and 6.

x <- seq(1, 6, length = 100)

This creates a sequence of 100 numbers between 1 and 100. To obtain the PDF,
we now use the dunif function:

f <- dunif(x, min = 1, max = 6)

f

## [1] 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

## [14] 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

## [27] 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

## [40] 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

## [53] 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

## [66] 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

## [79] 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

## [92] 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

We see that at each value of x, the PDF takes on the value .2, just as we saw
in Figure 8.1. Keep in mind that, since X is continuous, the values of the PDF
may not be interpreted as probabilities.

Cumulative Distribution Function To establish the probability that X
takes on values between a and b, it is easiest to work with the cumulative dis-
tribution function (CDF). For the continuous uniform distribution, cumulative
probabilities can be obtained using the punif function. For example, if we want
to know Pr(1 ≤ x ≤ 2), then the following syntax suffices:

punif(2, min = 1, max = 6)

## [1] 0.2
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The probability is .2, just as it should be:

Pr(1 ≤ x ≤ 2) =

∫ 2

1

f(x)dx

= 1︸︷︷︸
base

· .2︸︷︷︸
height

= .2

Here, the base times height principle works for the computation of the integral
because the distribution is rectangula (see Figure 8.1).

We can use the punif function to compute any probability. Imagine, for
instance, that we want to ascertain the probability that the random variable
takes on values between 3 and 5. Figure 8.2 shows the principle of how this is
done. We begin by evaluating the cumulative probability at 5. This gives the
probability of scoring 5 or less, which in our setup is identical to the probability
that the random variable takes on values between 1 and 5. Clearly, this is not
the probability we are looking for. However, when we subtract the cumulative
probability at 3, then we do obtain Pr(3 ≤ x ≤ 5). In R this means that we
issue the following command:

punif(5, min = 1, max = 6) - punif(3, min = 1, max = 6)

## [1] 0.4

It is easily verified this is the correct answer:

Pr(3 ≤ x ≤ 5) =

∫ 5

3

f(x)dx

= (5− 3)︸ ︷︷ ︸
base

· .2︸︷︷︸
height

= .4

The punif function allows us to take some value of a random variable and
determine the cumulative probability. We can also reverse the process by taking
a cumulative probability and asking to what value of the random variable this
corresponds. For this we use the qunif function. Imagine that we want to
know for what value of X the cumulative probability is .8. We can now issue
the following syntax.

qunif(.8, min = 1, max = 6)

## [1] 5

Thus, F (X = 5) = .8.
The qunif command is a bit more flexible than we just demonstrated because

we can add the option lower.tail. Compare the following two commands:
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Figure 8.2: Using Cumulative Probabilities to Obtain Other Probabilities
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Note: Pr(3 ≤ x ≤ 5) = Pr(1 ≤ x ≤ 5)− Pr(1 ≤ x ≤ 3).

Figure 8.3: Different Variants of the qunif Function
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Note: The left panel takes the option lower.tail = TRUE and finds a value x such that
Pr(X ≤ x) = 0.8. The right panel takes the option lower.tail = FALSE and finds a value x
such that Pr(X ≥ x) = 0.8.

qunif(.8, min = 1, max = 6, lower.tail = TRUE)

## [1] 5

qunif(.8, min = 1, max = 6, lower.tail = FALSE)

## [1] 2

The first command asks for a value x such that Pr(X ≤ x) = .8. The sec-
ond command asks for a value of x such that Pr(X > x) = .8. The former
corresponds to evaluating the cumulative distribution function, F (x), whereas
the latter corresponds to evaluating the survival function, S(x). In general, the
survival function is a function S(x) = 1 − F (x). The differences are shown in
Figure 8.3.

Generating Random Numbers On occasion, we may wish to sample from
a particular distribution. This is helpful, for example, when we want to generate
some artificial data to simulate the behavior of some phenomenon. In the case
of the continuous uniform distribution, the corresponding command is
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Figure 8.4: Random Numbers from a Continuous Uniform Distribution
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Note: 100’000 draws generated with runif.

set.seed(1234)

x <- runif(100000, min = 1, max = 6)

A graphical display of the distribution is shown in Figure 8.4. This reveals that
the distribution is more or less uniform over the interval [1, 6].

Getting into the syntax, the first line sets the seed for the random number
generator. This is something that a random number generator needs to start the
task of producing (pseudo-) random numbers. If you want to ensure that you
always generate the same set of random numbers, so that others can replicate
your work, it is essential that you set the seed. The number 1234 is arbitrary,
but anyone using it will get the same random numbers. When you omit the
seed, then the random number generator will use the state of the computer
system (e.g., clock time). Since this will be different at different times and for
different users, the random numbers that are generated will not be the same.

On the second line, we specify the runif function. The first argument of
this function is the sample size, n, which tells R how many random numbers
should be generated. The remaining arguments are familiar; they specify the
support of the continuous uniform distribution.

With random number generation, one principle is of the utmost importance:
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Figure 8.5: The Effect of a Small n on Random Number Generators
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Note: 100 draws generated with runif.

the larger the sample size, the more closely the set of random numbers approx-
imates the desired distribution. In Figure 8.5, we reduce the sample size to
n = 100. We see that the distribution does not look very uniform at all. In-
stead of a density that is flat over the support, we observe two peaks. This can
happen when we generate a small sample and is a normal result of sampling
fluctuation, a result that we shall discuss later in the course.

Naming Conventions We have now seen all of the built-in R commands for
the continuous uniform distribution. Perhaps you are seeing a pattern to the
naming of those functions. They always end with unif and the letter that is
added as a prefix determines the result that the function produces. Specifically,
the prefixes have the following effects:

• d results in the evaluation of the probability density function

• p yields the cumulative probability p associated with a value x of the
random variable

• q yields the value x of the random variable that is associated with a
cumulative probability of p
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• r generates random numbers

The nice thing in R is that these same naming conventions apply to all distribu-
tions. You will never have to guess as to what a particular command like dunif

does; the first letter says it all.

8.2.2 Discrete Uniform Distribution

R does not have built-in functions for all distributions. A case in point is the
discrete uniform distribution. However, using the knowledge from Chapter 1, it
is often quite easy to write your own equivalents of the d, p, q, and r functions.
We illustrate this here for the discrete uniform probability mass function.

Probability Mass Function Imagine a discrete random variable that takes
on values between 1 and k. To make things specific, let k = 5 so that X =
1, 2, 3, 4, 5. We declare the support using the following syntax:

k <- 5

x <- seq(from = 1, to = k, by = 1)

The seq command creates a sequence of numbers. The starting point is indi-
cated by from, which in this case is 1. The end point is indicated by to, which
for us is k, which we have initialized as 5. The by command indicates the step
size, i.e., the amount by which the numbers increase between the starting and
end points. This is set here to 1, so that we go from 1 to 2, 2 to 3, etc. Had
we specified 2 instead, then we would have obtained a sequence of the numbers
1, 3, and 5. By initialzing a different value of k, we can create any sequence of
numbers between 1 and k.

The probability mass function for X = 1, 2, · · · , k is f(x) = 1/k. This is
easily declared as a function:

ddu <- function(x, k) ifelse(x>=1 & x <=k, 1/k, 0)

The function states that f(x) = 0 for values outside the interval [1, k]. Inside
this interval, f(x) = 1/k. For example,

ddu(2,k)

## [1] 0.2

This function call computes f(2), which is the probability that X takes on the
value 2, in this case .2.

Cumulative Distribution Function The CDF is equal to F (x) = x/k over
the interval x ∈ [1, k]. Prior to X = 1, the CDF is 0; past k, it stays at a value
of 1 (see Figure 8.6). We can program this in the following manner:
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Figure 8.6: Discrete Uniform Cumulative Distribution Function
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Note: X = 1, 2, 3, 4, 5.

pdu <- function(x, k) ifelse(x<1, 0, ifelse(x>=1 & x<=k, x/k, 1))

We can now apply this function to determine, for example, the cumulative
probability at X = 4:

pdu(4, k)

## [1] 0.8

We can also write a function to determine the value of X that is associated
with a particular cumulative probability.

qdu <- function(p,k) ifelse(p>=0 & p<=1, round(p*k), NA)

For example, the value of X for which the cumulative probability is .6 is given
by

qdu(.6, k)

## [1] 3

Random Number Generation Finally, consider the idea of generating ran-
dom numbers from a discrete uniform distribution. Here, we can use R’s built-in
sample function.
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rdu <- function(n, k) sample(1:k, n, replace = TRUE)

We can now draw, for instance, 10 numbers from the distribution:

set.seed(8050)

rdu(10, 5)

## [1] 2 5 5 1 5 5 1 4 2 4

8.3 Common Statistical Distributions

8.3.1 The Bernoulli Distribution

Description Consider a discrete random variable X that can take on values
0 and 1 with probabilities 1 − π and π, respectively. We say that X follows
the Bernoulli distribution, which has one parameter, to wit π. We write this as
X ∼ B(π). The probability mass function is

f(x) = πy · (1− π)1−y

The Bernoulli distribution is of great relevance to political science, since many
of our variables are dichotomous (e.g., peace versus war or vote versus abstain).

R R treats the Bernoulli distribution as a special case of the binomial distri-
bution, which arises when the number of trials is equal to 1.

8.3.2 The Binomial Distribution

Description Consider a series of n independent Bernoulli trials, each with
identical π. Each trial yields an outcome of 0 or 1, where 1 is often referred
to as a “success.” Now let X be a count of the number of 1s that are realized
in n trials. Hence, X = 0, 1, · · · , n. Then X follows the binomial distribution:
X ∼ BN (n, π). The probability mass function is given by

f(x) =

(
n

x

)
πx · (1− π)n−x

Here
(
n
x

)
is the binomial coefficient, which captures the number of sequences of

0s and 1s that result in a value of x on the random variable.1

In the natural sciences, including genetics, the binomial distribution plays
an important role. In the social sciences, the BN (1, π) distribution is highly

1The binomial coefficient evaluates to(n
x

)
=

n!

x! · (n− x)!

Here q! = q · (q − 1) · (q − 2) · · · 2 · 1.
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relevant, since it is identical to the Bernoulli distribution. For n > 1, the social
scientific relevance is often less clear because the underlying assumptions are
highly stringent. For example, one might be inclined to use the distribution to
describe the number of yay votes in a legislature. Each legislator is either a yay
(1) or a nay (0), and the count of 1s may be viewed as a measure of legislative
support for a bill. While this would appear to be a perfect case for the binomial
distribution, its validity is questionable. First, legislators act in political parties,
and not independently from one another. Second, the probability of voting
for the bill may vary greatly across legislators, depending on their ideological
leanings.

R Imagine we are interested in obtaining the probability of 4 successes (1s)
in 10 trials. Imagine the probability of success on a given trial is .4. Then the
probability can be computed using

dbinom(4, 10, .4)

## [1] 0.2508227

Note that the first argument is the value x, the second argument is the number
of trials, n, and the third argument is π.

Now lets consider a slightly different question: what is the probability of
obtaining at most 4 successes. This can be computed as follows:

pbinom(4, 10, .4)

## [1] 0.6331033

We can, of course, also ask what value of X is associated with a cumulative
probability of say 0.75:

qbinom(.75, 10, .4)

## [1] 5

The qbinom contains the lower.tail option we encountered for the continuous
uniform distribution.

Finally, imagine that we would like to generate a sample of 1000 draws from
a Bernoulli distribution with π = .2. Then we issue

set.seed(1230)

x <- rbinom(1000, 1, .2)

Note that the second argument, corresponding to the number of trials, has been
set to 1. The histogram for this sample is shown in Figure 8.7.



8.3. COMMON STATISTICAL DISTRIBUTIONS 129

Figure 8.7: Random Numbers from a Bernoulli Distribution
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Figure 8.8: The Chi-Squared Distribution
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Note: The chi-squared distribution with 1, 3, 6, and 10 degrees of freedom.

8.3.3 Chi-Squared Distribution

Description The chi-squared distribution plays an important role in hypoth-
esis testing, in particular tests of the statistical independence between two vari-
ables. Imagine that we have a variable X that takes on non-negative values.
One possible distribution for such a variable is the chi-squared distribution:
X ∼ χ2

ν , where ν > 0 are the so-called degrees of freedom. The probability
density function is complex and can be found on Wikipedia. Figure 8.8 shows
the chi-squared distribution for four different values of ν.

R The chi-squared probability density function can be evaluated using dchisq.
For example, to evaluate the density at X = 4 when ν = 3, we issue the following
syntax:

dchisq(4, 3)

## [1] 0.1079819

The cumulative probability at X = 4 with ν = 3 can be evaluated via

https://en.wikipedia.org/wiki/Chi-squared_distribution
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pchisq(4, 3)

## [1] 0.7385359

This is equal to Pr(X ≤ 4). To evaluate the value at which a particular cu-
mulative probability is reached, we issue the qchisq command. For example,

qchisq(.9, 3)

## [1] 6.251389

shows that Pr(X ≤ 6.251) = .9. The qchisq command has the option lower.tail.
Random numbers can be drawn using rchisq. For example,

rchisq(10, 3)

## [1] 3.2602094 2.1408397 2.1199618 0.6719882 4.8660137

## [6] 0.6352690 2.8129698 1.2885902 2.7700754 1.1617218

produces a sample of 10 observations drawn from a χ2
3-distribution.

8.3.4 F Distribution

Description The F distribution, also known as Snedecor’s distribuion or the
Fisher-Snedecor distribution, is another staple of hypothesis testing. It is used
extensively in tests of variances as well as analysis of variance, and will play a
crucial role in the second part of this course. Lke the chi-squared distribution,
the F distribution has a non-negative support. The probability density function
is again quite complex and can be found on Wikipedia. Important to know is
that the distribution is characterized by two degrees of freedom, which influence
the shape of the distribution. If a random variable X follows the F distribution,
we often write X ∼ F(ν1, ν2), where ν1 and ν2 are the degrees of freedom.
Examples of the distribution are shown in the four panels of Figure 8.9.

R To evaluate the value of the probability density function, we use the df

function. For example,

df(2, 1, 10)

## [1] 0.1009389

The first argument is the value x, the second argument is ν1, and the third
arguments is ν2.

The cumulative probability can be evaluated using pf. For example,

https://en.wikipedia.org/wiki/F-distribution
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Figure 8.9: The F Distribution
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pf(2, 1, 10)

## [1] 0.8123301

gives the cumulative probability at X = 2 for a F distribution with 1 and 10
degrees of freedom. If we have the cumulative probability and want to work
backwards to the value x, then we should use qf. For instance,

qf(.5, 5, 2)

## [1] 1.251925

states that, in a F distribution with ν1 = 5 and ν2 = 2, Pr(X ≤ 1.252) = .5.
The lower.tail option is again available.

Random numbers can be generated using rf. For example,

rf(5, 10, 10)

## [1] 0.2745938 0.5705225 0.5449951 0.7770402 0.6661139

generates 5 random numbers drawn from F(10, 10).

8.3.5 Normal Distribution

Description Of all the statistical distributions, the normal distribution with-
out a doubt takes the center stage in social science. Although there are not
that many social and political phenomena that follow the normal distribution
exactly, it is often a useful starting point. The distribution is relatively simple
and thi certainly contributes to its appeal. However, there are also plenty of
theoretic reasons to opt for a normal distribution. Imagine, for example, that
public opinion polls on an issue tends to some mean. However, there is random
fluctuation around this mean due to different methodologies. If we assume that
deviations above the mean are just as likely than deviations below the mean
and that large deviations are improbable, then the normal distribution suggests
itself. In statistics, too, the normal distribution emerges frequently, for example,
as the sampling distribution of the sample mean (more about this in a couple
of weeks).

The normal distribution can be used when the random variable takes on
values in the interval ±∞. The probability density function is

f(x) =
1√

2πσ2
e−

1
2 ( x−µσ )

2

Here, π ≈ 3.14159, µ is the mean, and σ > 0 is the standard deviation. When
X follows the normal distribution, we typically write X ∼ N (µ, σ). Figure 8.10
shows a variety of normal distributions.
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Figure 8.10: The F Distribution

0.0

0.1

0.2

0.3

0.4

−10 −5 0 5 10
x

D
en

si
ty

µ = 0, σ = 1

0.00

0.05

0.10

0.15

0.20

−10 −5 0 5 10
x

D
en

si
ty

µ = 0, σ = 2

0.0

0.1

0.2

0.3

0.4

−10 −5 0 5 10
x

D
en

si
ty

µ = 5, σ = 1

0.00

0.05

0.10

0.15

0.20

−10 −5 0 5 10
x

D
en

si
ty

µ = 5, σ = 2

Note: The normal distribution with various means and standard deviations.



8.3. COMMON STATISTICAL DISTRIBUTIONS 135

The distribution in the top-left panel is known as the standard normal
distribution. It is written as N (0, 1) and is characterized by a mean of 0 and
a standard deviation of 1. Notice that the apex of this distribution is situated
at the mean; this is always the case with the normal distribution. The top-
right panel shows what happens when we keep the mean at 0 but increase the
standard deviation. The apex remains at 0, but the values are now spread
out more due to the greater standard deviation. In the bottom-left panel, we
observe the effect of changing the mean. Compared to the top-left panel, the
spread in the distribution remains the same: in both cases, σ = 1. However, the
whole curve is now shifted to the right by 5 units, so that the apex is now at
µ = 5. Finally, the bottom-right panel shows the combined effect of changing
the mean and the standard deviation.

R In R, values of the standard normal probability density function can be
obtained through

dnorm(x, mean =, sd = )

The first argument pertains to the value at which the probability density func-
tion needs to be evaluated. The second argument specifies the mean of the
normal distribution; by default, this is 0. The final argument specifies the stan-
dard deviation of the normal distribution; by default, this is 1. The default
settings mean that

dnorm(0)

evaluates the standard normal distribution at 0. If instead, we weant to evaluate
N (2, 2) at X = 0, then we issue the following command:

dnorm(0, mean = 2, sd = 2)

## [1] 0.1209854

The cumulative probability is obtained using the pnorm function, which has
the same arguments and defaults as dnorm. Given N (−2, 3), for example, the
probability that X takes on a value of 0 or less is given by

pnorm(0, mean = -2, sd = 3)

## [1] 0.7475075

Reversing the process, qnorm finds the value of X that is associated with a
cumulative probability of p. For example, to discover for which value of the
standard normal distribution the cumulative probability is .95, we issue the
following command:
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qnorm(.95, mean = 0, sd = 1)

## [1] 1.644854

For this command, too, we can choose whether we want to evaluate the upper
or the lower tail of the distribution.

Finally, random numbers can be drawn from a normal distribution by using
rnorm. For example, to draw 15 observations from N (2, 4), the following syntax
suffices:

rnorm(15, mean = 2, sd = 4)

## [1] 1.2813207 0.7995045 -2.2780135 0.1071075 3.4154548

## [6] 5.3287114 -1.4347779 3.3659262 6.2251219 5.7542229

## [11] 4.9496537 3.9265557 7.5719458 0.2038080 -4.1441288

8.3.6 Poisson Distribution

Description The Poisson distribution applies to discrete random variables
that can take on values 0, 1, 2, · · · . A politically relevant example of such a
variable is a protest count over a particular time period. For example, it could
be that in 1910, a grand total of 11 industrial strikes took place in a particular
country. Then 11 is the realized value of a discrete random variable. The protest
variable is discrete because it makes little sense to speak, for example, of 10.25
strikes.

While discrete variables with values 0, 1, 2, · · · can be captured through a va-
riety of distribution, a popular choice has always been the Poisson distribution.
This has a probability mass function

f(x) =
λx

x!
e−λ

where λ > 0 is the sole parameter. The shorthand is X ∼ P(λ).

R Imagine that we want to know the probability that 0 strikes took place.
When we know that λ = 2, the probability can be computed using

dpois(0, lambda = 2)

## [1] 0.1353353

Imagine that we want to know the probability of 2 strikes or fewer when
λ = 2. This probability can be obtained as follows:
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ppois(2, lambda = 2)

## [1] 0.6766764

Reversing the process, if we know that the cumulative probability is .95, the
value of X can be computed as

qpois(.95, lambda = 2)

## [1] 5

Here, we can again change the value of lower.tail to TRUE—the scenario that
we just computed—or FALSE.

Finally,

rpois(10, lambda = 2)

## [1] 1 3 0 2 4 2 0 2 0 1

draws 10 random numbers from P(2).

8.3.7 Student’s t-Distribution

Description Student’s t-distribution is a bell-shaped and symmetrical dis-
tribution whose shape depends on a single parameter, the degrees of freedom,
ν > 0. The probability density function is complex and may be found on
Wikipedia. More important for present purposes is that you learn to recognize
the shape of the distribution, which is shown—along with the standard normal
distribution—in Figure 8.11. From this figure, it is clear that the t-distribution
looks a lot like a standard normal distribution, with the exception that it has
much heavier tails. By this, we mean that there is more probability mass in the
tails of the t-distribution than in the tales of the standard normal distribution.
However, as ν increases, then this distinction disappears. Asymptotically, then,
as ν → ∞, student’s t and the standard normal distributions become indis-
tinuishable. In practice, the differences are already very small when ν = 30.

When a random variable follows the t-distribution, we write X ∼ T (ν). In
the social sciences, not all that many phenomena follow a t-distribution. How-
ever, one class of random variables, so-called test statistics, frequently follows
this distribution. We shall see this when we come to the topic of hypothesis
testing.

R Imagine X ∼ T (10). The following now evaluates the probability density
function at X = 2:

dt(2, df = 10)

## [1] 0.06114577

https://en.wikipedia.org/wiki/Student%27s_t-distribution
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Figure 8.11: Student’s t-Distribution
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To evaluate the cumulative probability at X = 2, we issue

pt(2, df = 10)

## [1] 0.963306

Now imagine we want to know for which x, Pr(X ≥ x) = .80. This can be done
as follows:

qt(.8, df = 10, lower.tail = FALSE)

## [1] -0.8790578

Note that we specify lower.tail = FALSE because we want to explore the
upper tail of the t-distribution, as indicated by the ≥ symbol in the probability
expression. Finally,

rt(5, df = 10)

## [1] -1.54278976 0.20702798 0.03392175 -0.19208024

## [5] -2.17059802

gives us 5 random draws from T (10).

8.3.8 Other Distributions

In the social sciences and statistics, there are many more distributions that are
relevant. Many of these have also been implemented in R. CRAN shows a list
of everything that is available in R, which is a lot.

8.4 Moments

To obtain the moments of the distributions that we have discussed, one can
proceed in two ways. First, we can approach empirically and use the moments

library. In this case, we draw a very large sample (e.g., n = 1′000′000) from a
distribution and compute the moments based on this sample. Next, the actuar

library contains the theoretical moments for a limited number of distributions.
Here, we can obtain the moments without first having to generate data. This
section illustrates both libraries for a limited number of distributions.

8.4.1 Working with moments

Let us return to the continuous uniform distribution. For U(a, b), we know that
the first moment about 0 is equal to 1

2 (a + b) (see, for example, Wikipedia).
We also know that the second central moment, i.e., the variance, is equal to
1
12 (b− a)2. Finally, the third and fourth standardized moments are 0 and − 6

5 .

https://cran.r-project.org/web/views/Distributions.html
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous
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We now evaluate these moments for a particular uniform distribution, to wit
U(0, 10). We generate a sample of 1’000’000 observations from this distribution:

set.seed(1234)

x <- runif(1000000, 0, 10)

We now activate the moments library, which we used in Chapter 5 for computing
skewness and kurtosis. We then ask for the first raw moment:

library(moments)

moment(x, order = 1, central = FALSE)

## [1] 4.998109

When we round this we obtain 5, which is the correct value. We can also ask
for the second central moment:

moment(x, order = 2, central = TRUE)

## [1] 8.342678

This is very close to the actual value, which is 8.33. The third standardized
moment is obtained via the skewness function:

skewness(x)

## [1] 0.001430739

When we round this, we get 0, which is the correct value. Finally, the fourth
standardized moment is computed as follows:

kurtosis(x)

## [1] -1.201462

This, too, is very close to the actual value of -1.2 of the fourth standardized
moments.

We can apply these functions to any and all distributions. The key is that
we draw a large sample. Even with 1’000’000 observations, we see that the com-
puted values deviate just the slightest amount from the true moments. In small
samples, this will happen much more frequently, due to the greater sampling
fluctuation.

8.4.2 Working with actuar

For a limited number of distributions, the actuar package will provide the
moments without us having to generate a sample. A downside is that only raw
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moments are computed. This means that central and standardized moments
will have to be derived with some tricks.

Let us show the process for the chi-squared distribution. To obtain the first
raw moment of a χ2

5-distribution, we can do the following:

library(actuar)

## Error in library(actuar): there is no package called ’actuar’

mchisq(1, 5)

## Error in eval(expr, envir, enclos): could not find function "mchisq"

We see that the first argument is the order of the moment and the second
argument is the degrees of freedom. Since the first raw moment is equal to the
mean, we now know that the expectation of a chi-squared variate is the degrees
of freedom. Consulting, for example, Wikipedia, it is easily verified that the
variance of a chi-squared variate is 2µ. This is the second central moment,
which is equal to

E[(X − E[X])2] = E[X2]︸ ︷︷ ︸
2nd raw moment

− (E[X])
2︸ ︷︷ ︸

1st raw moment squared

We can implement this using

mchisq(2, 5) - (mchisq(1, 5))^2

## Error in eval(expr, envir, enclos): could not find function "mchisq"

It is easily verified that the result is correct. For the skewness and kurtosis, I
would suggest using the moments package, since the tricks needed to compute
these are quite complex.

8.4.3 Exercises

(1) Imagine that X measures the number of newspaper articles dedicated to
a particular political party in a particular year. We assume that X ∼ P(λ) and
that the average number of newspaper articles dedicated to the party is λ = 10.
What is the probability that, in a given year, the party receives coverage in 20
articles?

(2) And what is the probability that the party receives coverage in 10 articles
or more?

(3) Consider X ∼ T (2). What is Pr(0 ≤ x ≤ 2)?

https://en.wikipedia.org/wiki/Chi-squared_distribution
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(4) Consider an F distribution with 5 and 100 degrees of freedom. Simulate
10’000’000 observations. What are the mean, variance, skewness, and kurtosis?

(5) Consider the standard normal distribution. For what value of X is the
cumulative probability equal to .975?

(6) Imagine we are interested in the number of days that a coalition gov-
ernment survives after it is put in place. Imagine that survival time follows a
chi-squared distribution. What would be the probability that the government
stays in power for more than one year (365 days) when the average survival time
of the government is 460 days?
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Chapter 9

Hypothesis Tests for Single
Variables

In this chapter, we discuss a number of procedures that are commonly used to
test hypotheses about a single variable. We begin by showing how one can use
R’s probability functions to perform hypothesis tests. Next, we show tests for
proportions, means, variances, and skewness/kurtosis.

9.1 Required Packages

The two required packages for these exercises are EnvStats and fBasics. These
contain the test routines that we shall use to test hypotheses about the variance,
skewness, and kurtosis.

9.2 Testing Hypotheses by Hand

Although R contains many automated procedures for hypothesis testing, it is
often quite simple to do all the work by hand, using the software only as a calcu-
lator. We show how this is done in the Fisher and Neyman-Pearson approaches.

9.2.1 Implementing Fisher’s Approach to Test a Hypoth-
esis about a Proportion

Imagine, we are interested in forecasting a referendum. We formulate the null
hypothesis that voters are undecided: H0 : π = .5, where π is the probability
that a person will vote in favor of the proposal. We randomly draw a sample of
10 individuals and find that 9 of them plan to vote for the proposal. Should we
reject the null hypothesis at a significance level of .05?

To answer this question, we begin by computing the probability that 9 out
of 10 individuals vote in favor if the null hypothesis is true. This can be done

145
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by relying on the binomial distribution:

dbinom(9, 10, 0.5)

## [1] 0.009765625

We need to combine this probability with the probability of outcomes that are
just as unlikely or even less likely. There are three such outcomes: 0, 1, and 10.
Thus, the p-value is

dbinom(0, 10, 0.5) + dbinom(1, 10, 0.5) + dbinom(9, 10, 0.5) +

dbinom(10, 10, 0.5)

## [1] 0.02148438

Since this value falls below the significance level, we reject the null hypothesis.

9.2.2 Implementing the Neyman-Pearson Approach to Test
a Hypothesis about a Proportion

Someone believes that the referendum will fail and argues that the probability
that a citizen votes for a proposal is only .4. We call this Ha. The null hypoth-
esis, as before, is that citizens are undecided: H0 : π = .5. We draw a bigger
sample of n = 400 and find that 180 plan to vote for the proposal. The Type-I
error rate is .05.

Let X denote the number of yes votes. We invoke the central limit theorem
and assume that X ∼ N (n · π,

√
n · π · (1− π)). Under the null hypothesis

π0 = .5. We want to find the critical value xc such that

Pr

(
Z ≤ Xc − n · πo√

n · π0 · (1− π0)

)
= α,

where Z is a standard normal variate. The reason we are looking in the left
tail of the standard normal distribution, as indicated by the less-then-or-equal
sign, is that the hypothesized value under Ha is less than under H0. To find
the value of the standard normal variate corresponding to .05, we issue

z <- qnorm(0.05, mean = 0, sd = 1, lower.tail = TRUE)

z

## [1] -1.644854

We now obtain Xc as follows:

n <- 400

pi0 <- 0.5

x.crit <- z * sqrt(n * pi0 * (1 - pi0)) + n * pi0

x.crit
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## [1] 183.5515

where pi0 is π0. If the observed value of X is less then or equal to 183.551,
then we reject the null hypothesis. That is the case here:

isTRUE(180 <= x.crit)

## [1] TRUE

We reject the null hypothesis in favor of the alternative hypothesis.
It is also easy to compute the statistical power. The statistical power is

the probability of rejecting H0 assuming that HA is true. This is computed as
follows:

pi1 <- 0.4

w <- (x.crit - n * pi1)/sqrt(n * pi1 * (1 - pi1))

power <- pnorm(w, mean = 0, sd = 1, lower.tail = TRUE)

power

## [1] 0.9918852

Hence, we have plenty of power in our test.

9.3 Testing Proportions

We just performed a test of proprtions by hand. However, we can also let R
perform this test for us. We illustrate the process using the demo variable in
the world indicators.dta data. As our research hypothesis, we formulate the
notion that, in 2013, democracies where still less common than non-democracies
around the globe. If it is equally likely to observe a democracy and a non-
democracy, then π = Pr(Democracy) = .5 = Pr(Non − Democracy). Thus,
our research hypothesis is

HA : π < .5

The null hypothesis negates the research hypothesis and, as such, can be for-
mulated as

H0 : π ≥ .5

This hypothesis will now be tested. We do this at a significance level of .10.
To perform the test, we use the prop.test function. In its simplest form,

this function requires a couple of arguments: (1) a count of the number of
democracies (or, more generally, a count of the 1s); (2) the sample size; (3) a
specification of π0; and (4) an indication of the test direction. To obtain the
first two ingredients, we start by creating a table:
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library(foreign)

world <- read.dta("world indicators.dta")

table(world$demo)

##

## Non-Democratic Democratic

## 89 70

We observe that the number of democracies is 70 and that the sample size is
159. We can now issue the following syntax:

prop.test(70, 159, p = 0.5, alternative = "less")

##

## 1-sample proportions test with continuity correction

##

## data: 70 out of 159, null probability 0.5

## X-squared = 2.0377, df = 1, p-value = 0.07672

## alternative hypothesis: true p is less than 0.5

## 95 percent confidence interval:

## 0.0000000 0.5086092

## sample estimates:

## p

## 0.4402516

Looking at the results, we see that the null probability has been set to 0.5
and the alternative hypothesis is that the “true p is less than 0.5.” This is
conform the specification of HA. We also see that the estimated probability of
encountering a democracy is 0.44. This clearly is in the direction of HA. The
question is whether we can reject H0. The answer to that question can be found
in the line starting with X-squared. Here, we observe a test statistic of 2.0377.
Using a χ2

1 sampling distribution for the test statistic, we obtain a p-value of
.07672. This is smaller than the significance level, so we reject H0 in favor of
HA.

A couple of comments are in order. The way I have presented the test, I
have mixed elements from the Fisher and Neyman-Pearson approaches. From
Fisher, I have borrowed the ideas of a significance level and a p-value. From
Neyman and Pearson, I have borrowed the notion that there is an alternative
hypothesis. In practice, social scientists often engage in this kind of mixing of
the approaches. As long as one remains aware of their philosophical differences,
then there should be no problem in doing so.

Second, the test deviates a bit from the one we did by hand. Instead of
relying on the normal approximation, what the current test does is to compare
the observed distribution to the distribution that would have arisen if π were
0.5. This test logic is described in the notes on applied hypothesis testing.
The χ-squared test statistic, however, is practically the same as when we would
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compute a standard normal test statistic, as we did earlier, and square it.1

9.4 Testing Means

Testing Hypotheses about a Single Mean

The 2012 American National Election Study (ANES) asked respondents to in-
dicate their feelings toward liberals on a so-called feeling thermometer. This
measure runs from 0 (very cool feelings) to 100 (very warm feelings), and tradi-
tionally 50 has been treated as the neutral catgeory. A researcher formulates the
hypothesis that Americans generally feel negatively about liberals: HA : µ < 50.
Instead of testing this hypothesis, we test the complementary null hypothesis:
H0 : µ ≥ 50. How do we perform this test in R?

The answer is that we use the t.test function. This has three central
arguments: (1) an indication of the hypothesized value; (2) a specification of
the direction of the test; and (3) a reference to the variable in the data. Our data
are contained in the file feeltherm.dta. The relevant variable is feel liberal:

feel.dat <- read.dta("feeltherm.dta")

summary(feel.dat$feel_liberal)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## 0.00 30.00 50.00 48.31 65.00 100.00 541

To test the null hypothesis, we no issue the following syntax:

t.test(feel.dat$feel_liberal, mu = 50, alternative = "less")

##

## One Sample t-test

##

## data: feel.dat$feel_liberal

## t = -4.8105, df = 5372, p-value = 7.733e-07

## alternative hypothesis: true mean is less than 50

## 95 percent confidence interval:

## -Inf 48.88519

## sample estimates:

## mean of x

## 48.30579

What can we conclude from the test? First of all, our sample mean is 48.31,
which is in the direction of HA. Second, the test statistic is -4.81. When referred
to a Student’s t-distribution with 5372 degrees of freedom, we find p = 0.000

1Note that the square of a standard normal variate is χ-squared distributed with 1 degree
of freedom.
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(the rounded value of 7.733e-07). We would reject H0 at any conventional
significance level. The conclusion, then, is that the we side with the researcher,
at least until new data come along.

Testing Hypotheses about Means in Paired Samples

The same data set also contains feeling thermometer ratings for conservatives.
The same researcher now hypothesizes that Americans feel warmer toward con-
servatives than liberals: HA : µC > µL or, alternatively, µC − µL > 0. The null
hypothesis that we test negates the research hypothesis: H0 : µC − µL ≤ 0.

Feelings toward conservatives and liberals are measured within the same
individuals, so this is a classical example of a paired samples t-test. What we
do is to generate a new variable that measures the difference in feelings toward
conservatives and liberals in each group. From the algebra of expectations, we
know that µC−L = µC − µL. Hence, by formulating the null hypothesis as
µC−L ≤ 0 we capture the original null hypothesis µC − µL ≤ 0.

We start the procedure by generating the new variable:

library(dplyr)

feel.dat <- mutate(feel.dat, diffeel =

feel_conservative - feel_liberal)

summary(feel.dat$diffeel)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -100.000 -20.000 0.000 5.016 30.000 100.000

## NA's

## 572

We now perform the t-test on the new variable:

t.test(feel.dat$diffeel, mu = 0, alternative = "greater")

##

## One Sample t-test

##

## data: feel.dat$diffeel

## t = 8.7368, df = 5341, p-value < 2.2e-16

## alternative hypothesis: true mean is greater than 0

## 95 percent confidence interval:

## 4.071262 Inf

## sample estimates:

## mean of x

## 5.015724

We observe that respondents like conservatives better than liberals by a margin
of roughly 5 points (the sample mean on diffeel). This difference favors HA.
The test-statistic is 8.74. When referred to a t-distribution with 5341 degrees
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of freedom, the p-value is 0.000. We reject the null hypothesis in favor of the
research hypothesis.

9.5 Testing Variances

Our researcher is extremely prolific and generates yet another hypothesis: feel-
ings toward liberals are above 50 percent of maximum polarization. While it
may not look like it, this can be construed as a hypothesis about the variance.
Under maximum polarization, there is a chance of .5 that someone gives liberals
a score of 0 and an equal chance that she gives them a score of 100. In this case,
the variance is equal to 2500. Our researcher thus argues that the variance in
feelings toward liberals is greater than 1250. The corresponding null hypothesis
is that the variance is less or equal to 1250: H0 : σ2 ≤ 1250.

We can test the null hypothesis using a χ2-test, which is implemented in
the EnvStats package. The varTest command in this package takes four argu-
ments: (1) a reference to the data; (2) a specification of the hypothesized value;
(3) an indication of the direction of the test; and (4) a significance level. The
following syntax performs the test of interest:

library(EnvStats)

##

## Attaching package: ’EnvStats’

##

## The following objects are masked from ’package:rapport’:

##

## kurtosis, skewness

##

## The following objects are masked from ’package:moments’:

##

## kurtosis, skewness

##

## The following object is masked from ’package:car’:

##

## qqPlot

##

## The following objects are masked from ’package:stats’:

##

## predict, predict.lm

##

## The following object is masked from ’package:base’:

##

## print.default

varTest(feel.dat$feel_liberal, sigma.squared = 1250, alternative = "greater", conf.level = 0.95)
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## Warning in is.not.finite.warning(x): There were 541 nonfinite values

in x : 541 NA’s

## Warning in varTest(feel.dat$feel liberal, sigma.squared = 1250,

alternative = "greater", : 541 observations with NA/NaN/Inf in ’x’

removed.

##

## Results of Hypothesis Test

## --------------------------

##

## Null Hypothesis: variance = 1250

##

## Alternative Hypothesis: True variance is greater than 1250

##

## Test Name: Chi-Squared Test on Variance

##

## Estimated Parameter(s): variance = 666.4517

##

## Data: feel.dat$feel_liberal

##

## Test Statistic: Chi-Squared = 2864.143

##

## Test Statistic Parameter: df = 5372

##

## P-value: 1

##

## 95% Confidence Interval: LCL = 645.8192

## UCL = Inf

We observe that the sample variance is way smaller than 1250. Consequently,
it should not come as a surprise that we fail to reject the null hypothesis. The
χ2 test statistic is huge at 2864.143. When referred to a χ2-distribution with
n− 1 = 5372 degrees of freedom, the p-value is 1. Clearly, there is no reason to
reject the null hypothesis in favor of the researcher’s claim.

9.6 Testing Normality

The final test we shall discuss is the D’Agostino’s test of normality, which si-
multaneously considers skewness and excess kurtosis. It is well known that the
normal distribution has no skewness or excess kurtosis, so that the null hypoth-
esis is that both of these moments are 0. The test assesses the actual degree
of skewness and excess kurtosis in the data and determines if this is consistent
with the null hypothesis. It also allows us to detemine where the problem lies:
with skewness, kurtosis, or both.

The version of the test that we like the best is implemented in the fBasics
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library. It is the dagoTest command and, in its basic form, it takes only one
argument: a data vector. We apply it to feelings about liberal groups.

detach("package:EnvStats", unload = TRUE)

library(fBasics)

## Loading required package: timeDate

##

## Attaching package: ’timeDate’

##

## The following objects are masked from ’package:rapport’:

##

## kurtosis, skewness

##

## The following objects are masked from ’package:moments’:

##

## kurtosis, skewness

##

## Loading required package: timeSeries

##

## Attaching package: ’timeSeries’

##

## The following object is masked from ’package:psych’:

##

## outlier

##

##

##

## Rmetrics Package fBasics

## Analysing Markets and calculating Basic Statistics

## Copyright (C) 2005-2014 Rmetrics Association Zurich

## Educational Software for Financial Engineering and Computational

Science

## Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.

## https://www.rmetrics.org --- Mail to: info@rmetrics.org

##

## Attaching package: ’fBasics’

##

## The following object is masked from ’package:psych’:

##

## tr

##

## The following object is masked from ’package:car’:

##

## densityPlot

x <- na.omit(feel.dat$feel_liberal)
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dagoTest(x)

##

## Title:

## D'Agostino Normality Test

##

## Test Results:

## STATISTIC:

## Chi2 | Omnibus: 150.7298

## Z3 | Skewness: -8.4747

## Z4 | Kurtosis: -8.8831

## P VALUE:

## Omnibus Test: < 2.2e-16

## Skewness Test: < 2.2e-16

## Kurtosis Test: < 2.2e-16

##

## Description:

## Thu Dec 3 13:52:13 2015 by user:

(Make sure to unload EnvStats using detach; otherwise dagoTest does not
yield any output.) If we are looking to test skewness and excess kurtosis jointly,
then we should look at the omnibus test. The test statistic here is roughly
150.73. When referred to a χ2-distribution with 2 degrees of freedom, this
yields p = .000, which is suficient evidence to reject the null hypothesis. The
problem is with both skewness and kurtosis. The test statistic for skewness is
-8.47. When referred to the standard normal distribution, we obtain p = .000,
so that we reject the null hypothesis that the skewness is 0. The test statistic
for excess kurtosis is -8.88. Again using the standard normal distribution, the
p-value is .000. Thus, we reject the hypothesis of no excess kurtosis as well.

9.7 Exercises

(1) Imagine a scholar who argues that the fraction of Democratic party iden-
tifiers to date is .3. We take this as the null hypothesis. We conduct a survey
among 2229 respondents and find that 802 of them identify as Democrats. Use
R to test the null hypothesis, setting the Type-I error rate to .05. Should it be
rejected or not? Motivate your answer, i.e., show the test statistic and p-value.

(2) A scholar argues that feeliings toward big business are, on the average,
negative in the aftermath of the economic crisis. The 2012 American National
Election Studies (ANES) contain a feeling thermometer rating for big business.
The measure is included in the feel.dta data. Formulate the null hypothesis
that goes along with the research hypothesis. Then test this hypothesis. What
do you conclude and why?
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(3) Using again feelings toward big business, can we say that this variable is
distributed normally in the population? Motivate your answer.

(4) Consider the research hypothesis that the variance in the population in
feelings toward big business is at most 500. Formulate and test the relevant null
hypothesis. What do you conclude and why?

(5) The 2012 ANES respondents also asks respondents about their feelings
toward unions. Imagine your research hypothesis is that, on the average, Amer-
icans like big business better than unions. Formulate and test the relevant null
hypothesis. What do you conclude and why?
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