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Preface

Regression analysis remains the work horse of quantitative social science. Al-

though more advanced statistical models have entered the scene in recent

decades, there is no doubt that regression analysis retains a prominent place in

consumer research, criminology, economics, political science, psychology, public

policy, sociology, and other social sciences. Neither is there any doubt that a

solid understanding of the linear regression model provides the best access to

the advances in statistical modeling that have taken place in the social sciences.

This book aims at introducing the most important topics in linear regression

analysis from a social science perspective. This means that the book focuses on

variants of the linear regression model that are commonly found in the social

sciences. It also means that the examples will be primarily drawn from the social

sciences. Finally, the social science perspective means that the focus is mostly

on application as opposed to statistical proofs.

For the applied researcher, it is important to know when one should use

a particular model, what assumptions are being made, and how one should

interpret the results. These three topics form the core of the book. Applied

researchers will also be interested in how they can carry out regression analysis

on their own. Although the primary focus of this book is not on statistical

programming, readers will find R code blocks throughout the text. I decided to

focus on R not only because this software is free, but also because it is rapidly

becoming the statistical programming platform of choice in the social sciences.

R can be downloaded from the Comprehensive R Archive Network for Linux,

OS X, and Windows.

xiii

http://cran.r-project.org
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Prerequisites

To take full advantage of this book, the reader should be familiar with ba-

sic algebra, including exponents, logarithms, linear, and quadratic equations.

She should also have completed a first course in statistics, covering descriptive

statistics, probability theory, and hypothesis testing. Without this background,

the material will be difficult to follow.

In certain parts, this book relies on calculus and matrix algebra. Prior knowl-

edge of these topics is not assumed, as they are covered in the appendix. While

calculus and matrix algebra facilitate the understanding of certain concepts,

readers should be able to follow the book without them.

Organization

The book is organized into three parts. In Part I, key concepts of regression

analysis are introduced in the context of the simple linear regression model.

This model allows for a single predictor only. In Part 2, the model is extended

to include multiple predictors. This results in the so-called multiple regression

model. In this part, we also discuss widely used extensions of the linear regression

model such as polynomial regression, categorical predictors, and interactions. In

Part 3, we discuss regression assumptions and diagnostics. Here, we also extend

the model to time series and panel data. There are three sets of appendices,

covering differentiation and optimization, matrix algebra, and regression proofs.

I chose to remove the proofs from the main text so that the flow would not

be interrupted too much. Although this makes it easier to skip the proofs

altogether, I encourage readers to take a look at them as they help to deepen

one’s understanding of regression analysis.
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Part I

Simple Regression Analysis
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Chapter 1

Regression as a Descriptive

Tool

In simple linear regression analysis, we predict a continuous dependent variable

with a single predictor. The method can be construed as a descriptive tool,

which aims at clarifying the relationship between two variables in a data set.

However, it can also be thought of as a model that represents a set of hypotheses

or an entire theory for some outcome. In this chapter, we discuss regression as

a descriptive tool, in the way one would do in a course on descriptive statistics.

In the next chapter, we will then elaborate on regression as a statistical model.

1.1 A First Example

Consider the data in Table 1.1. These are Labour vote and seat shares (in

percentages) in Great Britain in all elections since World War II. Given that

Britain is a democracy, we would expect there to be a relationship between the

Labour vote and seat shares. The question is what this relationship is. More

specifically, if we were to look for a linear relationship between vote and seat

shares, what would the linear equation look like? To answer this question, we

rely on simple linear regression.

To perform linear regression analysis, we begin by turning the tabular data

into a scatter plot. We place the Labour vote shares on the horizontal axis and

2
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Table 1.1: Labour Vote and Seat Shares Since WWII

Date Vote Share Seat Share
1945-07-08 47.7 61.4
1950-02-23 46.1 50.4
1951-10-25 48.8 47.2
1955-05-26 46.4 44.0
1959-10-08 43.8 41.0
1964-10-15 44.1 50.3
1966-03-31 48.0 57.8
1970-06-18 43.1 45.7
1974-02-28 37.2 47.4
1974-10-10 39.2 50.2
1979-05-03 36.9 42.4
1983-06-09 27.6 32.2
1987-06-11 30.8 35.2
1992-04-09 34.4 41.6
1997-05-01 43.2 63.4
2001-06-07 40.7 62.5
2005-05-05 35.2 55.2
2010-05-06 29.0 39.7
2015-05-07 30.4 35.7

Note: Vote and seat shares are in per-
centages.

the seat shares on the vertical axis. We then depict each combination of a vote

and seat share as a coordinate in a 2-dimensional Cartesian axis system. The

result is found in Figure 1.1.

The scatter plot reveals a positive relationship between the vote and seat

shares for Labour that, at first glance, looks to be roughly linear. As the Labour

vote share increases, the seat share tends to increase as well. Since the points

in the scatter plot do not lie on a straight line, we know that the relationship

between vote and seat share is not perfect. Indeed, the Pearson product moment

correlation between the two variables is 0.639, which is strong but certainly not

perfect.

Useful as the scatter plot is, it carries an important limitation. It does not
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Figure 1.1: Labour Vote and Seat Shares
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Note: The blue points correspond to the pairs of vote and seat shares shown in Table 1.1.
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tell us precisely what share of the seats Labour is expected to receive for a given

vote share. This is where linear regression analysis enters the picture. In linear

regression analysis, we find the line that best fits the cloud of data points in

Figure 1.1. This line takes the form of

̂Seat Share = a+ b · Vote Share

Here ̂Seat Share is the predicted Labour seat share based on Vote Share, a is

the intercept, and b is the slope. We say that we regress the Labour seat share

onto the Labour vote share. For the data in Figure 1.1, the regression line

satisfies the following equation:

̂Seat Share = 13.27 + 0.87 · Vote Share

This means that the intercept is equal to 13.27. We can think of this as the

seat share that Labour gets regardless of its electoral performance. The slope is

0.87. This means that for each additional percent of the vote share, Labour is

expected to receive about eight-tenth of a percent extra of the seat share. The

scatter plot with the regression line in the color red is shown in Figure 1.2.

It is important to realize that the regression line gives a prediction that

may deviate from the actual observed value of the dependent variable. In fact,

unless the predictor and dependent variable are correlated perfectly, there will

be discrepancies between the observed and predicted values of the dependent

variable. We call such discrepancies the residuals of the regression. The smaller

the vertical distance of an observed value (the blue points in Figure 1.2 to the

regression line, the smaller the residual is. In Figure 1.2, we see hat some of

the residuals are small, while others are quite large. You should also keep in

mind that the regression line is the best fitting line, which means that we have

already drawn it in such a manner that the residuals are minimized in some way.

Thus, even though the line represents, in some sense, an optimum this does not

mean that the actual and predicted Labour vote shares coincide.

Table 1.2 shows the predicted values and residuals for the Labour vote share

in each election. Where the residuals are negative, the predicted seat share
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Figure 1.2: Regressing the Labour Seat Share
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Table 1.2: Preditcions and Residuals for the Labour Seat Share

Date Seat Share Prediction Residual
1945-07-08 61.4 54.5 6.9
1950-02-23 50.4 53.2 -2.8
1951-10-25 47.2 55.5 -8.3
1955-05-26 44.0 53.4 9.4
1959-10-08 41.0 51.2 -10.2
1964-10-15 50.3 51.4 -1.1
1966-03-31 57.8 54.8 3.0
1970-06-18 45.7 50.6 -4.9
1974-02-28 47.4 45.5 1.9
1974-10-10 50.2 47.2 3.0
1979-05-03 42.4 45.2 -2.8
1983-06-09 32.2 37.1 -4.9
1987-06-11 35.2 39.9 -4.7
1992-04-09 41.6 43.0 -1.4
1997-05-01 63.4 50.6 12.8
2001-06-07 62.5 48.5 14.0
2005-05-05 55.2 43.7 11.5
2010-05-06 39.7 48.4 1.3
2015-05-07 35.7 39.6 -3.9

Mean 47.5 47.5 0.0

Note: Table entries are percentages.

exceeds the actual vote share. This happens, for example, in the 1959 elections

when the Labour seat share was predicted to be 51.2 percent, whereas the

actual seat share was only 41.0 percent. Where the residuals are positive, the

predicted seat share falls short off the actual seat seat share. This happened,

for example, in 2001. In this election, the predicted Labour seat share was 48.5

percent—shy of a majority—whereas the actual seat share was 62.5 percent.

Looking at the residuals in greater detail, we notice that they add to 0. Thus

negative and positive discrepancies cancel each other. Put differently, on the

average, the predicted Labour seat shares are correct. This can be seen in the

last row of Table 1.2, which is labeled “Mean.”
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1.2 Inside Regression Analysis

Now that we have seen an example of how simple regression analysis operates,

let us develop some general notation. Every regression analysis starts with a

predictor, i.e., a variable that is used to predict the dependent variable. De-

pending on the literature, this variable may also be referred to as the regressor

or the independent variable. It can be continuous, as is the case with the Labour

vote share. It may, however, also be discrete (although we shall explore the topic

of discrete predictors only much later). To allow for a more fine-grained distinc-

tion, continuous predictors are sometimes called covariates, whereas discrete

predictors are sometimes called factors.

Every (simple) regression analysis also has a dependent variable, which

is the characteristic that is being predicted. Depending on the literature, this

may also be known as the regressand, outcome or response variable. Whereas

the predictor can be both continuous and discrete, the dependent variable is

expected to be continuous. Seat share is an example of a continuous dependent

variable.

In the sample, the dependent and predictor variables are connected through

the so-called sample regression function:

Equation 1.1

ŷi = a+ b · xi

Here ŷi is the prediction, i.e., the value that we would expect Y to take given

a value X = x and the values of the intercept and slope.

The predictions are related to the actual values of the dependent variable

through the sample regression model:
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Equation 1.2

yi = ŷi + ei

= a+ b · xi + ei

That is, dependent = prediction plus residual, or, equivalently, ei = yi − ŷi.
Here ei is the residual, which is nothing more than a term that makes up the

discrepancy between two known quantities: the observed value of the dependent

variable and the prediction.

The residuals have the following important property, which we already saw

in the analysis of the Labour seat shares (see Table 1.2):

Equation 1.3

ē =
1

n

n∑
i=1

ei = 0

where n denotes the sample size. Thus, the residuals average to 0, meaning

that, on average, the predictions recover the dependent variable.

Figure 1.3 shows the regression concepts we have encountered so far, in-

cluding the observed dependent variable, the prediction, the sample regression

function, and the residual.

1.3 Regression Fit

Let us revisit the data from Table 1.1 and consider some alternative forms of

the regression line. One possible form is that there is no relationship between

the vote and seat shares for Labour. Of course, this would be bad news for

democracy but as a theoretical possibility it is worth exploring. In this case,

b = 0 and

̂Seat Share = a+ 0 · Vote Share = a
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Figure 1.3: Anatomy of a Sample Regression
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dent variable, and the residuals.



1.3. REGRESSION FIT 11

Figure 1.4: Alternative Specifications of Labour Sear Shares
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Note: In panel (a), the slope coeficient is set equal to 0; in panel (b), the intercept is 0.

This scenario produces a flat regression line, as is shown in Panel (a) of Figure

1.4. Here, a = 47.5. This is the predicted seat share, which remains constant

regardless of Labour’s electoral performance. For purposes of comparison, the

fitted regression line is shown as well.

A second possible scenario is that the intercept is 0. This is called regression

through the origin and implies that the predicted Labour seat share is 0 when

the Labour vote share equals 0 (which, of course, never happened). With a = 0,

̂Seat Share = 0 + b · Vote Share = b · Vote Share

The empirical estimate of the slope is b = 1.19. This scenario is depicted in

Panel (b) of Figure 1.4.

Each of these models presents an alternative idea about the relationship

between votes and seats in Britain. Importantly, none of these alternative no-
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tions fit the data as well as the regression equation with which we started out:

̂Seat Share = a+ b · Vote Share. How do we know this? As a criterion, we can

use the sum of the squared residuals:

Equation 1.4

SSE =

n∑
i=1

e2
i

Here SSE is known as the sum of squared errors. It has this name because the

residuals can be viewed as prediction errors. The smaller the SSE, the smaller

the prediction errors, and the better the fit. Indeed, if all of the observed values

of the dependent variable are on the regression line, then the SSE is 0 and we

have a perfect fit.

The SSEs for the regressions in Figures 1.2 and 1.4 are shown in Table 1.3,

along with key characteristics of those regressions. It is clear that the smallest

SSE is found for the original regression of Figure 1.2. The remaining specifi-

cations all have larger—sometimes much larger—SSEs. This lends credence to

our earlier claim that regression analysis selects the best fitting line.

The reason that the models from Figure 1.4 fit so poorly is easily understood

when we contrast the estimates to the implied constraint. The model in panel

(a) stipulates b = 0, but the value we obtained in Figure 1.2 was 0.87, quite

a ways removed from 0. The model in panel (b) stipulates a = 0, but this is

again far removed from the value we obtained in Figure 1.2, which was 13.27.

When restrictions like a = 0 and b = 0 are false, i.e., they do not correspond to

the data, then this is automatically translated into an inferior fit.

Table 1.3: Regression Specifications and Fit

Specification a b SSE

Figure 1.2 Estimated Estimated 926.35
Figure 1.4(a) Estimated Fixed at 0 1564.00
Figure 1.4(b) Fixed at 0 Estimated 1019.00
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In the practice of social research, the SSE is often converted into the coef-

ficient of determination, which is also known colloquially as the R-squared:

Equation 1.5

R2 = 1− SSE

SST

Here

Equation 1.6

SST =
n∑
i=1

(yi − ȳ)2

is the sum of squares total, which measures the variation in the dependent

variable. Like the SSE, the coefficient of determination has a clear lower bound

of 0. Unlike the SSE, which does not have a clear upper-bound, the coefficient

of determination is bounded from above at 1. This upper-bound is reached if

SSE = 0 and indicates that the regression fits the data perfectly. We say that

the regression accounts for 100 percent of the variance in Y . The lower-bound

is reached when the regression line is flat, as in Panel (a) in Figure 1.4. In this

case, SST = SSE and R2 = 0. We say that the regression accounts for none

of the variance in Y .

In the regression in Figures 1.2, the sample variance in Labour seat shares

is 86.89. Since SST = (n− 1) · s2
Y , it follows that SST = 1564.026. Applying

Equation 1.5 yields an R-squared value of 0.408 for the fitted model. Thus, we

can say that the Labour vote share explains around 40.8 percent of the variance

in the Labour seat share. Earlier, we saw that the Pearson product-moment

correlation between the seat and vote shares was r = 0.639. If we square

this correlation we obtain the R-squared of 0.408 exactly. Thus, in the simple

regression model, the R-squared is simply equal to the square of the Pearson

product-moment correlation, as is shown in Appendix C:
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Equation 1.7

In simple regression analysis,

R2 = r2

1.4 Conclusion

In this chapter, we have looked at simple regression analysis as a descriptive

tool. We have seen that the regression line is the best fitting line to a set of

data points in a scatter plot and that this line can be used to make predictions

about a dependent variable. This is not the only way to look at simple regression

analysis, however. It is also possible to view this type of analysis as a statistical

model that pertains to a population and is estimated using sample data. We

shall introduce this idea in the next chapter.



Chapter 2

Regression as a Model

In this chapter, we look at regression analysis from a new perspective, namely

that of statistical modeling. After a brief general introduction to (statistical)

modeling, we derive simple regression analysis as one particular instance of a

statistical model. We also state the assumptions of the simple regression model,

which play an important role in statistical inference, as we shall see in Chapter

3.

2.1 Models in the Social Sciences

Models play a central role in the social sciences, especially in quantitative ap-

proaches. To understand what they are, we invoke one of several definitions

that the Oxford English Dictionary offers:

A simplified or idealized description or conception of a particular

system, situation, or process, often in mathematical terms, that is

put forward as a basis for theoretical or empirical understanding, or

for calculations, predictions, etc.

Several features stand out in this definition. First and foremost, all models

are simplifications. Just like a model air plane lacks many features that a real air

plane possesses, a social scientific model is no carbon copy of social reality. Nor

15
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is it meant to be, for simplification is the whole intent and purpose of models,

as we shall see.

A second key feature is that models are used to enhance our empirical under-

standing of phenomena and to help us make predictions. We formulate a model

to enhance our grasp of phenomena such as democracy, conflict, and distribu-

tion and, to a lesser extent, to make future predictions for those phenomena.

In this sense, all models are tools used to enhance insight.

A third feature mentioned by the Oxford English Dictionary is that models

are typically stated in mathematical terms. This is certainly true of statistical

models such as the linear regression model. Mathematics is not the only model-

ing language, however. Especially in the social sciences, all modeling starts and

ends with verbal representations. That is, we use natural language to state the

model before rendering it in mathematical terms. Once we have estimated the

model—a topic we shall discuss in Chapter 3—we return to natural language

to offer interpretations and derive implications.

The idea that models are simplifications requires some further attention.

It is an idea that stems from neo-positivist philosophy of science. Bryman

(1988) calls this the doctrine of elementarism. Here, the crucial assumption is

that the best pathway toward knowledge and understanding is to break down a

phenomenon into its parts and to study the relationships between those parts.

The key to the whole exercise is to retain those parts that are crucial to the

phenomenon and to discard everything else. Indeed, in the spirit of simplifi-

cation, the modeler would like to retain as few parts as is necessary to grasp

essential features of the phenomenon under study. All of this stands in sharp

contrast with holistic approaches, which aim at grasping a phenomenon in its

full complexity.

At first sight, the holistic approach would seem far superior to the doc-

trine of elementarism. Why should one obtain only a partial understanding of

a phenomenon instead of pursuing the complete truth? However, there are

both pragmatic and philosophical arguments that would cause one to favor el-

ementarism over holism. Pragmatically speaking, it is obviously tremendously

complicated to understand a social phenomenon in all of its facets. Those that

claim to be holistic are frequently criticized for not accomplishing this goal.
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Indeed, from a psychological perspective (e.g., bounded rationality) it is even

questionable that our brains are designed for holistic understanding. From a

philosophical perspective, it may also be the case that elementarism suffices.

Think, for example, of an engineer who is testing the aerodynamic properties of

a new aircraft design. For this purpose, a scale model typically is good enough.

This model does not have functioning engines, control surfaces, or avionics, nor

does it contain passenger seats. None of these features are essential for mod-

eling the aerodynamics of the aircraft. In the social sciences, we may also not

need to know everything about, for example, societies to understand how party

systems form. It may suffice to know something about the social cleavages in a

society. Indeed, many theories in the social sciences are in essence reductions of

phenomena to core elements. This is true even of grand theories such as Marx-

ism, which singles out property relations as the core element for understanding

economic and social development.

When we take the doctrine of elementarism seriously, then it follows that

we cannot expect models to tell us “the truth, the whole truth, and nothing but

the truth.” Due to their simplifying logic, it is clear that models cannot deliver

the whole truth. Nor is this the intent, so to hold models to this standard is

both nonsensical and unfair.

What, then, can models deliver? By what standards should they be judged?

Gilchrist (1984) formulates two such standards:

1. Alitheia, i.e., to make unhidden what might otherwise remain hidden.

By this criterion, a model has value when it uncovers aspects that would

otherwise be obscured by other, less fundamental, features of the problem

one is researching.

2. Adeaquatio intellectus, i.e., to provide insight. This broader than alitheia

because insight may be obtained even when hidden features remain hid-

den. The critical question here is: Do we learn something from the model?

It is perfectly valid to apply these utilitarian criteria to models because they are

central to the very activity of modeling. That is, we build models to gain insight

and/or make thinks unhidden. Some models may do a better job at that than
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others. However, no model can deliver the whole truth. To cite the statistician

G.E.P. Box, “all models are wrong, but some are useful.”

2.2 Verbal and Mathematical Models

To understand models and modeling languages, let us consider a simple example.

Imagine we are interested in foreign direct investment (FDI) in sub-Saharan

Africa. The units of analysis are years. In each year we record the per capita

FDI in the region. Our goal is to explain the per capita FDI level in each year.

Imagine we believe that per capita FDI depends on one thing and one thing

only, to wit the level of political turmoil in the region. Of course, it is unlikely

that turmoil is the only factor driving FDI but, for the sake of argument, let us

say that we are wiling to make that assumption. We could now formulate the

following verbal model: per capita FDI in sub-Saharan Africa depends on the

level of political turmoil in the region. We could even lend a specific direction to

this model by saying that increased levels of turmoil tend to decrease FDI. The

model itself may derive from a larger theory about risk aversion in investors,

which causes them to reduce investments in politically unstable regions.

What the verbal model does is to use natural language to express an idea

about the drivers of FDI. We have reduced FDI to what we consider to be its

core: political turmoil. In the process, we have left out myriad other factors such

as the economic state of the region and political corruption. Without realizing

it, we have applied the doctrine of elementarism.

The major drawback of verbal models is that they lack precision. A state-

ment like “increased levels of political turmoil tend to decrease FDI” immediately

raises a number of questions. How much does FDI decrease? And what kind

of increase in political turmoil does it take to bring about this decrease? We

can add precision by turning the verbal model into a mathematical model. The

language of mathematics adds precision. In addition, it makes available a whole

new set of operators.

In its most general form, a mathematical model of FDI may be written as

h(y, θ) = f(x, β)
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Figure 2.1: Four Different Mathematical Models of FDI

250

500

750

1000

0.0 2.5 5.0 7.5 10.0
Turmoil

F
D

I

Panel (a)

300

600

900

0.0 2.5 5.0 7.5 10.0
Turmoil

F
D

I

Panel (b)

0
500

1000
1500
2000

0.0 2.5 5.0 7.5 10.0
Turmoil

F
D

I

Panel (c)

0
500

1000
1500
2000

0.0 2.5 5.0 7.5 10.0
Turmoil

F
D

I
Panel (d)

Note: A linear (panel (a)), logarithmic (panel (b)), exponential (panel (c)), and logistic (panel
(d)) model of the relationship between FDI and political turmoil.

Here y stands for FDI and x stands for political turmoil. The symbols f and h

stand for two different functions. The symbols β and θ represent different (sets

of) parameters that influence the form of the two functions.

The generic model can be filled in by specifying the nature of f and h and

by defining β and θ. For example, we could theorize that FDI is a linear function

of political turmoil (see Panel (a) of Figure 2.1):

y = β0 + β1x

Here h(y, θ) = y (the so-called, identity link), f(x, β) is a linear function, and

β consists of an intercept (β0) and a slope (β1). Alternatively, we could specify
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the following model, which is depicted in Panel (b) of Figure 2.1:

y = eβ0+β1x

Here h(y, θ) = y, f(x, β) is an exponential function, and β again has two

elements, β0 and β1. An equivalent formulation of this model is

ln y = β0 + β1x

Here h(y, θ) is a logarithmic function, f(x, β) is a linear function, and β consists

of a slope and intercept. As displayed here, increases in political turmoil have

a particularly severe effect when the initial turmoil level is low; when there is

a lot of turmoil to begin with, a further increase does not have as much of an

effect. The reverse of this pattern is demonstrated in Panel (c) of Figure 2.1.

Here, increases in turmoil have little impact when the initial level of turmoil is

low. But when turmoil is already high, a further increase has a large effect. The

mathematical specification is

y = β0 + βx1

Finally, consider

y =
β0

1 + exp(β1(x− β2))
,

which is depicted in Panel (d) of Figure 2.1.1 Here h(y, θ) = y, f(x, β) is the

logistic function, and β consists of three parameters, to wit β0, β1, and β2.

Now FDI is relatively irresponsive to political turmoil when the initial level of

turmoil is low. It is also relatively irresponsive to turmoil when there is already

a lot of it. However, at some level of turmoil—around 5 in the graph—a further

increase produces a rapid decline in FDI. Of course, the specifications shown

here do not even begin to scratch the surface of how the relationship between

FDI and political turmoil may be modeled. What all of these models have in

common, however, is that they specify precisely how FDI and political turmoil

are related.

1The expressions exp q and eq mean the same thing.
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One of the things mathematical models allow us to do is to quantify the

effect of some variable x on another variable y, e.g., the effect of political

turmoil on FDI. One of the easiest ways to do this is by computing marginal

effects. These are defined as the change in an outcome such as y relative to

an infinitesimally small change in x. We can think of this as the instantaneous

rate of change. Mathematically, the marginal effect for the outcome y is given

by

Equation 2.1

lim
∆x→0

∆y

∆x
=
∂y

∂x

Here ∆x denotes the change in x, which we let go to 0. Further, ∆y is the

change in y. Finally, ∂y/∂x is the first partial derivative of y with respect to x

(see Appendix A). For Panel (a) in Figure 2.1, the marginal effect is

∂y

∂x
= β1

We see that this effect does not depend on x: a very small increase in political

turmoil always produces the same change in per capita FDI regardless of the

starting point at which the increase is introduced.

This is certainly not true for the remaining models depicted in Figure 2.1.

For the model in Panel (b), for example,

∂y

∂x
= β1e

β0+β1x

Here, we see that the marginal effect is a function of x, so that the impact of

a small change in x depends on the starting point for x. For Panel (c), the

marginal effect is
∂y

∂x
= βx1 lnβ1
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and for Panel (d) it is

∂y

∂x
= −β1

β0 exp(β1(x− β2))

(1 + exp(β1(x− β2)))2

All of these marginal effects clearly depend on the initial level of x, e.g., po-

litical turmoil. We shall be using marginal effects like these frequently in the

interpretation of linear regression models.

An alternative way of quantifying an effect is by using the discrete change.

Here, we change the predictor by δ units, i.e., ∆x = δ. We now define the

discrete change as

Equation 2.2

∆y = f(x+ δ, β)− f(x, β)

For example, for the model in Panel (a) of Figure 2.1, the discrete change is

∆y = [β0 + β1(x+ δ)]− [β0 + β1x] = β1δ

We typically use discrete changes when it makes no sense to assume an infinites-

imally small change in x, for example, when x is discrete.

2.3 Statistical Models

We have spent some time on mathematical models because they are intimately

related to statistical models. Indeed, all statistical models are mathematical

models in that they use the language of mathematics to represent their contents.

Statistical models, however, have some unique features that set them apart.

First, statistical models are models of a data generating process (DGP) and,

in this sense, they are intrinsically empirical in their focus. When we conduct

statistical research, we collect data. The data generating process is the process

we believe to have generated this data. A statistical model formalizes the DGP

that is being theorized.
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Second, statistical models are inherently stochastic. They explicitly recog-

nize the role that uncertainty plays in producing data and make this an essential

feature of the model specification. More specifically, statistical models include

one or more error terms. These are unobserved random variables that are in-

cluded to capture (1) omitted predictor variables; (2) measurement error in the

dependent variable; and (3) idiosyncratic variation. In a sense, the error term

acknowledges the limitations of the doctrine of elementarism. It captures all

those aspects of the DGP that are not captured through the elements that we

have singled out as partial explanations of the dependent variable. If we call the

latter part the fixed component of the model, then we can say that the model is

made up of both fixed and stochastic components. The presence of a stochastic

term driving the dependent variable means that it, too, is a random variable.

Having defined the key distinguishing characteristics of statistical models,

we can now think more specifically about the elements that make up a model.

Following the literature on generalized linear models (McCullagh and Nelder,

1983), we can identify the following elements:

1. Distribution: We specify a particular probability distribution, i.e., a prob-

ability density or mass function, for the dependent variable.

2. Outcome: By outcomes, we mean one or more parameters of the distri-

bution that are explicitly modeled as a function of a set of predictors. Not

all parameters have to be turned into outcomes of predictors. However,

every model has at least one parameter that is turned into an outcome.

3. Linear Predictor: A function of the predictors that is linear in the param-

eters, i.e., a function with parameters that act as multiplicative weights

of the predictors and where the weighted predictors are summed to form

a linear composite. With only a single predictor, this takes the form of

Equation 2.3

ηi = β0 + β1xi



24 CHAPTER 2. REGRESSION AS A MODEL

4. Link function: A function that links the linear predictor to an outcome

of interest.

These elements help to formulate a large variety of statistical models. We

now consider a specific variant of statistical models, to wit the simple linear

regression model.

2.4 The Simple Linear Regression Model

2.4.1 Basics

Consider a population with a random variable Y that is continuous and un-

bounded (i.e., its support is the real number line). We postulate that

Equation 2.4

yi ∼ N (µi, σ)

That is, for each population unit i, the dependent variable is normally dis-

tributed. The standard deviation of the normal distribution does not vary across

units, a condition that is called homoskedasticity. By contrast, the mean of

the dependent variable fluctuates across units, whence the subscript i on µ. As

such, it constitutes an outcome in the sense of the previous section. We model

this outcome using Equation 2.3, so that

Equation 2.5

µi = ηi

= β0 + β1xi

Since the mean is identical to the linear predictor, we say that the link func-

tion is the identity link. Taken together, Equations 2.4 and 2.5 constitute the

population regression model. Equation 2.5 is known as the population re-

gression function. This function expresses the conditional expectation of Y
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Figure 2.2: The Population Regression Model

x1 x2 x3

µ1

µ2

µ3

X

Y

Note: The red line is the regression line. The black dots on the line are predictions based
on different values of X. The dark blue normal distributions centered about the black dots
reflect the uncertainty in the predictions. The more variance, the wider the distributions, and
the greater the uncertainty.

given a particular value of the predictor: µi = E[yi|xi]. As such, it is what we

would expect to see given the value x and the linear predictor β0 + β1xi.

Figure 2.2 illustrates the model. The red line represents the population

regression function, µi = E[yi|xi] = β0 + β1xi. This line gives the values that

we expect to observe for the dependent variable, given a particular value of

the predictor. As such it gives the conditional expectation of Y . The three

black dots on the red regression line represent three different expected values of

the dependent variable. Specifically, for X = x1, we obtain a prediction µ1 =

E[y|x1] = β0 +β1x1, for X = x2 we obtain µ2 = E[y|x2] = β0 +β1x2, and for

X = x3 we obtain µ3 = E[y|x3] = β0 +β1x3. About the population regression

function, we have drawn normal distributions of the type N (µi, σ). These give

the distribution of the observed dependent variable around the regression line.

For example, at X = x1 we expect a value of µ1 for the dependent variable.

But some of the actual values y are larger than µ1; these fall in the left tail



26 CHAPTER 2. REGRESSION AS A MODEL

of the normal distribution that is drawn at X = x1. Other observed values of

Y are smaller than µ1; these fall in the right tail of the normal distribution.

In general, the wider the dispersion of the normal distribution, the more the

observed values of Y tend to deviate from the conditional expectations, µi,

and the less predictable the dependent variable is. Figure 2.2 also clearly shows

that, while µi shifts depending on the value of X, the standard deviation of

the normal distribution remains constant; the spread of the normal distribution

does not vary. This is the homoskedasticity assumption.

The model as we have derived it, relies heavily on the terminology and

notation of the generalized linear modeling literature (McCullagh and Nelder,

1983). Econometricians (e.g., Greene, 2011) typically use a different notation

for the model. In this notation, the error term makes an explicit appearance:

Equation 2.6

yi = β0 + β1xi + εi

εi ∼ N (0, σ)

In this parametrization, ε is the error term we discussed earlier. We assume this

error term to be normally distributed with a mean of 0 and a standard deviation

of σ. Due to these assumptions, it follows that yi ∼ N (β0 + β1xi, σ), which is

identical to what Equations 2.4 and 2.5 state. That the mean of Y reduces to

β0 + β1xi is easily shown:

E[yi] = E[β0 + β1xi + εi]

= E[β0] + E[β1xi] + E[εi]︸ ︷︷ ︸
= 0 by assumption

= β0 + β1xi

We see that the econometric and generalized modeling views of the linear

regression model are in the end indistinguishable. It is good to know both views.

The econometric parametrization is commonly found in the social sciences and
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we shall rely heavily on it in this textbook as well. The generalized linear mod-

eling parametrization, on the other hand, is useful because statistical programs

such as R use it in their syntax for statistical commands. We shall see this, for

example, in Chapter 3.

2.4.2 Relationship with the Sample Regression Model

How does the population regression model relate to the model shown in Equation

1.2? Stated in the simplest way, Equations 2.4-2.6 pertain to the population,

whereas Equation 1.2 pertains to a sample. Going below the surface, the quan-

tity a in Equation 1.2 is the estimator of the parameter β0 in Equations 2.5-2.6,

whereas the quantity b in Equation 1.2 is the estimator of the parameter β1 in

Equations 2.5-2.6. Similarly, the residuals in the sample regression model may

be viewed as estimators of sorts the error term in Equation 2.6, although we

should keep in mind that they do not behave quite the same way. How these

estimators are obtained is the subject of the next chapter.

2.4.3 Interpretation

The population regression function may be interpreted in a number of different

ways. One approach is to compute the marginal effect for the outcome µ:

Equation 2.7

dµ

dx
=
∂(β0 + β1x)

∂x
= β1

This may be interpreted as the instantaneous rate of change in the conditional

expectation of Y . We see this rate is constant. Alternatively, it is possible to

compute the discrete change in µ due to a change of δ units in X:

Equation 2.8

∆µ|∆x = δ = [β0 + β1(x+ δ)]− [β0 + β1x] = β1δ
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Usually, we set δ = 1. We can then say the following:

For a unit increase in X, Y is expected to change by β1 units.

If β1 = 0, then we do not expect the dependent variable to change at all—there

is no linear relationship between Y and X. If β1 < 0, then we expect the

dependent variable to decrease for a unit increase in X. Finally, if β1 > 0, then

we expect the dependent variable to increase for a unit increase in X.

2.4.4 Assumptions

The population regression model of Equations 2.3-2.5 is actually somewhat

incomplete. Usually, we add a number of assumptions, whose purpose will

become apparent in Chapter 3. It is important to understand these assumptions,

as they are part of the model and are usually not innocuous. Indeed, most of

the third part of this book pertains to the question what to do when these

assumptions fail.

To create some order into the assumptions, we divide them into three rubrics:

(1) assumptions about the predictors; (2) assumptions about the error terms;

and (3) assumptions about the relationship between the predictors and the error

terms. We shall utilize this organizational scheme throughout the book, adding

to it when this becomes necessary as we extend the regression model.

Assumptions about the Predictors The linear regression model does not

make many assumptions about the predictors. As we have already seen, for

example, these can be both continuous and discrete. In addition, they can be

transformed in any admissible way. For example, yi = β0 + β1x
2
i + εi is a

perfectly legitimate regression model. While this model is no longer linear in

the predictors (the predictor is now squared), it is still linear in the parameters

(the parameters occur as multiplicative weights and the various terms—constant

and quadratic x—are summed together). Thus, the linear regression model is

extremely flexible when it comes to the predictor side of things. This one reason

why the model remains a powerful tool of quantitative social research.

There is one aspect of the predictors, however, where we usually assume

away flexibility. This is the assumption that the only stochastic variable in the
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model is the dependent variable. The predictors are generally not considered

random variables or, put differently, we assume them to be fixed.

Assumption 2.1

The values x of the predictor are assumed to be fixed in

repeated samples.

What does it mean for the values of a predictor to be fixed in repeated sam-

pling? It means that the values of the predictor are under the complete control

of the researcher. The researcher determines which values of the predictor occur

and with what relative frequency. Put differently, “nature” and its whims play

no role in generating the values x. Consequently, the only source of random

variation in the dependent variable is the error term.

Stating that the values of the predictor are fixed is a convenient assumption.

We relied on it already once when we demonstrated that E[yi|xi] = β0 +β1xi.
2

But is the assumption also reasonable? It depends on the nature of the research

that is being conducted. In experimental research, it is indeed the case that the

researcher has complete control over the values of the predictor. She decides

how many values of the predictor are realized, what these values are, and how

often they occur in the experiment. Moreover, the same values and relative

frequencies will emerge in each iteration of the experiment, no matter how

frequently it is being conducted, as long as the experimental protocol remains

unchanged. This is tantamount to saying that the values x are fixed in repeated

sampling. While experiments are still somewhat rare outside of psychology, they

have gained popularity everywhere in the social sciences. Thus, Assumption 2.1

is applicable to many social scientific studies.

Most social research remains non-experimental, however, and here Assump-

tion 2.1 is much less plausible. Measures of the predictors are usually collected

at the same time as those of the dependent variable, using surveys and other

methods. To say that some of these measures—those of the predictor—are

fixed, whereas others—those of the dependent variable—are not, would seem,

2Otherwise, we would have had to write E[yi] = β0 + β1E[xi]. With xi being fixed, we
can treat it as a constant, so that E[xi] = xi.
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at best, heroic.

Assumptions about the Error Terms We generally make several assump-

tions about the error term. One assumption that we have already seen is the

following.

Assumption 2.2

The error terms are normally distributed.

Due to the normality assumption, we argue that the error terms follow a dis-

tribution that is symmetrical around the mean, as well as bell-shaped. Thus,

the probability mass for negative errors equals the probability mass for positive

errors. Further, large errors are less common than smaller errors. The corollary

of Assumption 2.2 s that the dependent variable is normally distributed.

The normality assumption is a useful first approximation of error processes.

In many cases, it also has a great deal of face validity. Remember that one of

the ingredients of the error terms is measurement error. It is usually reasonable

to assume that measurement errors are symmetric and that really large errors

are less likely than smaller ones. But there are exceptions to this rule. For ex-

ample, if some responses on the dependent variable are more socially desirable

than others, then you would not expect measurement errors to be symmetrically

distributed. More people would err on the side of the socially desirable response

than on the side of the less desirable response. Under these circumstances, you

would want to avoid a symmetry assumption. In other cases, the symmetry

assumption may be reasonable, yet normality does not seem to be the most ap-

propriate assumption. In the political agendas literature, for example, changes

in policy priorities tend to be smaller than normality would imply (e.g., Baum-

gartner et al., 2009). There is excess kurtosis that, by definition, is inconsistent

with normality. In Part 3, we shall briefly look into the topic of violations of the

normality assumption.

A second assumption about the error term that we have already seen con-

cerns its mean.
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Assumption 2.3

E[εi] = 0

This assumption implies that there is no systematic direction to the error terms.

Over all units, negative and positive errors cancel each other so that µi =

β0 + β1xi.

This assumption is often reasonable, but there are circumstances under

which it is not valid. One example is again the presence of a social desirability

bias. When there is a systematic tendency to err in a particular direction, then

there is no reason to believe that the errors average to zero. Another example

are stochastic frontiers in economics, where production processes may suffer

from random shocks (e.g., due to the weather) but may also have unobserved

built-in inefficiencies that cause the predicted production to be too optimistic

(e.g., Kumbhakar and Lovell, 2003).

The third assumption about the errors, we have also seen already: the errors

are supposed to be homoskedastic.

Assumption 2.4

V ar[εi] = σ2

That is, the values of the dependent variable are equally predictable (or unpre-

dictable) for all units. More specifically, the variance around the regression line

is not a function of the predictors.

Like the other assumptions we have made so far, the homoskedasticity as-

sumption is usually a reasonable starting point. However, there are situations

were it is a priori implausible. One such situation arises when there are learn-

ing/expertise effects. Imagine we are interested in modeling how quickly street

level bureaucrats (e.g., police officers) dispense with their tasks. We have one

bureaucrat who is new at the job and another one who has done it for 10 years.

It seems likely that the seasoned bureaucrat is much easier to predict, i.e., her

variance is smaller, than the novice. To assume, then, that the variance is equal
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for all bureaucrats is implausible.

Another situation where homoskedasticity is implausible is when actors have

different amounts of leeway for discretionary behavior. Take, for example, con-

sumer spending on luxury goods. Spending levels on these goods may be much

more predictable for those with small incomes than for those with large incomes.

Those who earn little will have little discretionary spending power, which means

that there is little room for spending on luxury goods. This translates into a

small variance around the regression line when x (income) is low. Those who

earn a lot, also can afford a great deal of discretionary spending. But whether

they use this to purchase luxury items depends on unobserved factors such as

the utility of luxury goods, which end up in the error term and which can vary

dramatically. Thus, we would expect a wide variation in luxury spending, with

some high income people spending nothing on these items and others spending

a lot. Again, to assume that all income groups display the same variation in the

dependent variable is a priori implausible, so that homoskedasticity may not be

the right starting point.

There is yet a fourth assumption that we frequently make about the er-

ror terms. This one, we have not yet seen and it states that the errors are

uncorrelated with each other. We say that there is no autocorrelation.

Assumption 2.5

Cov[εi, εj ] = 0

for i 6= j.

In Chapter 3, we shall see why we need this assumption. For now, we ask

again the question whether it is reasonable. This depends on the research design

that is being used. With cross-sectional data, we observe a sample of n units

at a single point in time. For such data, the assumption of no autocorrelation

is frequently reasonable, although this depends on the sampling design. Under

simple random sampling, the observations are independent, which also means

that it is reasonable to assume that Cov[εi, εj ] = 0 for i 6= j. Especially in

survey research, however, cross-sectional data are obtained frequently via cluster
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sampling and, in this case, the assumption of no auto-correlation is valid only

in a limited sense. Specifically, the errors of units from different clusters may

be assumed to be uncorrelated, but the errors of units from the same cluster

are typically correlated.

With time series data the assumption of no autocorrelation is violated

almost by definition. Such data, which will be discussed in greater detail in

Part 3, consist of successive time points such as days, weeks, months, quarters,

or years. The subscript i on εi thus references a particular time point. If we

now take the errors at time points i and j, they are almost always correlated,

especially when j is immediately adjacent to i. The reason is quite simple: a

random shock that occurs at time point i usually will continue to be felt at time

point j. Take, for example, the financial crisis of 2008. The Lehman Brothers

bankruptcy in September, 2008 constituted a shock to the financial markets

that did not immediately dissipate. It continued to be felt in October—and far

beyond—affecting the stock markets and other aspects of the world economy.

The “staying power” of shocks causes the assumption of no autocorrelation to

be violated in time series data.

Assumptions about the Relationship between the Predictor and the Er-

rors The last assumption that we should discuss concerns the relationship

between X and ε. In regression analysis, we typically assume exogeneity of the

predictor (Engle, Hendry and Richard, 1983). Stated mathematically,

Assumption 2.6

E[εi|xi] = 0

This means that the errors are independent from the predictor.3

Innocuous as Assumption 2.6 may look at first sight, it has far reaching

3Assumption 2.6 states the definition of strict exogeneity. In many cases, we require only
weak exogeneity, which can be stated as E[εixi] = 0. This amounts to a lack of correlation
between the error term and the predictor, which is a subset of independence. Also note that
the law of iterative expectations implies that E[εi] = 0—Assumption 2.3—if Assumption 2.6
is satisfied.
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implications. Specifically, the assumption implies:

1. Any and all omitted predictors are unrelated to the one included in the

model.

2. The functional form is correctly specified.

3. There are no feedback loops between Y and X.

Taken together, the implications mean there are no specification errors: the

model specifies the correct DGP—it is correctly specified.

It is a rather strong statement to assume away specification errors, especially

in the case of the simple regression model, where everything hinges on a single

predictor variable. Just on its face, it would seem that no single predictor can

do justice to the DGP that underlies such complex social phenomena like crime,

electoral performance, organizational behavior, and mental illness, to name just

a few disparate examples. Let us consider a few scenarios of what can go wrong

with Assumption 2.6 in the practice of social research.

To do this, we revisit the earlier example of political turmoil and FDI in

sub-Sharan Africa. In this example, we stipulated to have time series data for

a number of years. Denoting each year by i, the linear regression model can be

formulated as a stochastic version of Panel (a) in Figure 2.1:

FDIi = β0 + β1Turmoili + εi

As per assumption 2.6, E[εi|Turmoili] = 0. But is this realistic? First, consider

the notion that omitted predictors are unrelated to the predictor. One of the

predictors missing from the model is economic growth. Because we do not

explicitly include the predictor in the model, it becomes a part of the error

term. Assumption 2.6 implies that we assume economic growth to be unrelated

to political turmoil, but this seems odd. After all, it is plausible that growth

suffers when turmoil increases, implying a clear relationship rather than the

absence of one.

Second, consider the idea that the functional form is correctly specified.

This means that the relationship between FDI and political turmoil is indeed
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linear, not just in the parameters but also in the predictor. But what if the

relationship is more like that shown in Panel (b) of Figure 2.1? Then we should

have included a term of the form exp(Turmoil). The fact that we did not, means

that this term now ends up in ε. Since the omitted predictor is a function of

the predictor in the model, it is actually impossible to satisfy Assumption 2.6:

the central tendency of the errors is a function of turmoil and it is ludicrous to

assume otherwise.

Finally, consider the idea that there shall be no feedback mechanism from

Y to X. In our example, this means that changes in FDI should not produce

changes in political turmoil. But one could easily imagine a situation in which

there is feedback. As FDI deteriorates, for example, one could imagine that

this has a negative effect on the economy, which in turn may create political

discontent. If this mechanism holds, then turmoil is a function of FDI. However,

since FDI is driven in part by an error term, ipso facto turmoil is also driven by

the error term. In this case, there is a possible correlation between turmoil and

ε, which would invalidate Assumption 2.6.

2.5 Conclusion

In this chapter, we developed a modeler’s perspective on simple regression anal-

ysis. Key to this perspective is to view regression as a statement about a data

generating process. In this statement, we specify the dependent variable and

the predictor. We also develop an explicit function that relates the predictor to

the dependent variable. All of this can be viewed as a formalization of a verbal

theory of some social or political phenomenon. Key, too, is that we explicitly

allow for uncertainty in this formalization by incorporating a so-called error term.

We have also seen that the simple regression model typically comes with a

large number of assumptions. In this chapter, we identified as many as six of

them. While these assumptions sometimes are written off as mere technicalities

of the regression analysis, we have seen that they are actually empirical state-

ments. More specifically, the assumptions reflect suppositions about the data

generating process. These suppositions may be wrong and this will impact the

veracity of the regression results. Why this is so will become apparent in the
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next chapter, which deals with statistical inferences about the linear regression

model.



Chapter 3

Statistical Inference in Simple

Regression

In Chapter 2, we saw that the sample regression model can be viewed as the

estimated counter-part of the population regression model. More specifically,

we argued hat the intercept a of the sample regression model serves as an

estimator of the parameter β0 in the population regression model, and that the

slope b of the sample regression model serves as an estimator of the parameter

β1 in the population regression model. In this chapter, we now describe in

greater detail what these estimators look like and what their properties are. We

introduce three perspectives on estimation: ordinary least squares, methods of

moments estimation, and maximum likelihood. We derive the standard errors

and confidence intervals of the estimators, as well as sample regression function.

Finally, we discuss the topic of hypothesis testing.

3.1 The Estimation Problem

The problem with the population regression model is that it contains several

unknowns, to wit β0, β1, and σ2. These are the so-called parameters of the

model and they will have to be estimated. Estimation means that we produce

an educated “guess” of the parameters based on the information in the sample.

Statistical estimation theory is concerned with structured principles for finding

37
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estimators that possess certain desirable qualities. As a matter of definition,

the estimator is a rule to derive the value of the parameter from observed data

in the sample. We speak of an estimate when we reference the specific value

of the estimator in the sample.

To focus our thoughts let us designate the generic parameter as θ. The

regression coefficients and variance are all instances of this generic parameter.

We use the symbol θ̂ to reference the estimator of θ. We want this to be a

function of the sample data only; there should be no remaining unknowns driving

θ̂. The first question that we should ask is how we should use the data so that

they can shed light on the parameter. Here, we can rely on various estimation

principles such as least squares, method of moments estimation, and maximum

likelihood, which often—but not always—produce the same estimators, i.e., the

same formula. A second question we should ask is why we should trust the

results these estimators produce. This gets into the properties of estimators.

In general, we would like our estimators to possess certain properties. These

include unbiasedness, efficiency, consistency, and a known sampling distribution.

We say that θ̂ is unbiased when, in expectation, it recovers θ: E[θ̂] = θ. We say

that θ̂ is efficient when it is unbiased and has the smallest possible variance of

any unbiased estimator. We speak of consistency, if θ̂ converges in probability

to θ as the sample size goes to infinity. This means that, in very large samples,

the estimator almost certainly comes arbitrarily close to the true value of the

parameter. Finally, if θ̂ converges to a known distribution it will be possible

to derive confidence limits and to perform hypothesis tests. We now show

three estimation procedures for the simple linear regression model, which can

be shown to have these desirable properties when certain assumptions are met.

3.2 Least Squares Estimation

3.2.1 The General Principle

Least squares estimation is a general estimation principle that works extremely

well for linear models. Although properties of this estimator have to be proved

on an ad hoc basis, least squares estimators are widely employed in statistics,
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including linear regression analysis. One of the reasons for this widespread use

is that we have to make relatively few assumptions, especially when compared

to maximum likelihood or even the method of moments.

Imagine, we are interested in estimating the kth moment about the origin:

µk = E[Y k]. The least squares estimation principle states that we should pick

an estimator such that

Equation 3.1: Least Squares Criterion

S =
n∑
i=1

(yki − µk)2

is being minimized (Kmenta, 1997). This amounts to selecting the best estima-

tor, in the sense of creating the smallest distances to the data values yk. Since

there is no weighting, we sometimes call this ordinary least squares (OLS) to

contrast it with weighted least squares, a topic we shall encounter in Part III of

this book.

A simple example can illustrate the principle. Imagine that we are interested

in estimating the mean. This is µ1 = E[Y ], so that k = 1 and the least squares

criterion may be formulated as

S =
n∑
i=1

(yi − µ1)2

To compute the minimum of S, we start by taking its first derivative:1

dS

dµ1
= −2

n∑
i=1

(yi − µ1)

This gives the slope of the tangent line of S. We now set the first derivative

1See Appendix A.
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equal to zero because, at a minimum, the slope of the tangent is zero:

−2
n∑
i=1

(yi − µ1) = 0

The last thing to do is to solve for µ1. With simple algebra we can show that∑
i yi = nµ1, so that µ̂1 =

∑
i yi/n = ȳ. This is the least squares estimator.

It is a proper estimator because the right-hand side is a function of the data

only,2 The estimator that we have derived here has desirable properties. It

is unbiased, efficient, consistent, and asymptotically normally distributed (see

Kmenta, 1997).

As a second example, consider the estimation of the variance σ2. From

mathematical statistics, we know that σ2 = E[Y 2] − (E[Y ])2 = µ2 − µ2
1. We

have already derived the least squares estimator of µ1, to wit ȳ. We now need

to obtain the least squares estimator of µ2. As per Equation 3.1, this estimator

can be found by setting k = 2 and by minimizing

S =

n∑
i=1

(y2
i − µ2)2

The first derivative of S with respect to µ2 is −2
∑

i(y
2
i − µ2). Setting this to

zero and solving for µ2 yields µ̂2 =
∑

i y
2
i /n. Consequently,

σ̂2 = µ̂2 − µ̂2
1 =

∑
i y

2
i

n
− ȳ2 =

∑
i(yi − ȳ)2

n

This estimator has far less desirable properties. For example, it has a bias of

−σ2/n. This is what it means when we say that desirable properties of least

squares cannot be generalized but have to be demonstrated on an ad hoc basis.

3.2.2 Application to Simple Regression Analysis

How are the ideas that we have developed so far relevant for the regression

model? Remember that in the simple regression model the first raw moment

2It is a minimum because the 2nd derivative test comes out positive (see Appendix A).
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varies across observations and is given by µi1 = β0 + β1xi. Thus, the OLS

criterion may be written as:

Equation 3.2: OLS for the Simple Regression Model

S =
n∑
i=1

(yi − µi1)2 =
n∑
i=1

(yi − β0 − β1xi)
2

β̂0, β̂1 = argmin
β0,β1∈R

S

Here, argmin stands for argument of the minimum, which means the set of

values for β0 and β1 at which S is being minimized. Note that the values of

these parameters are not constrained in any way: they can take on any value

on the real number line (R).

We can obtain analytic solutions for β0 and β1 and shall do so in a mo-

ment. Before doing so, however, it may be useful to illustrate how least squares

estimation operates. Essentially, what we do is to select estimates β̂0 and β̂1,

which minimize Ŝ =
∑

i(yi − β̂0 − β̂1xi)
2 =

∑
i e

2
i = SSE. Figure 3.1 shows

this process for the Labour seat data in Table 1.1. Here, we assume that we

know β̂0 and we try different values for the slope. The blue line always panel

represents the OLS regression line from Figure 1.2. The red line represents the

regression line with the OLS estimator for the intercept and a trial value for the

slope. The figure cycles through different values of the slope. When it selects

the OLS estimate β̂1 = 0.87, then the blue and red regression lines coincide.

When we now look at the last panel, we see that S, displayed on the vertical

axis, reaches its minimum when β̂1 = 0.87. For all other values of the slope, we

observe that S is higher. So picking the OLS estimator of the slope optimizes

the least squares criterion.

Normally, we would not find the estimates by trial-and-error but use analytic

methods. We would do what we did before, which is to take the derivative, set

it to zero, and solve for the parameter. The only complication here is that we

have two parameters, so we take the partial derivatives and set both of them
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Figure 3.1: The Logic of Least Squares Estimation

40

50

60

30 35 40 45
Vote Share

S
ea

t S
ha

re

β̂1 = 0.6653

40

50

60

30 35 40 45
Vote Share

S
ea

t S
ha

re

β̂1 = 0.7653

40

50

60

30 35 40 45
Vote Share

S
ea

t S
ha

re

β̂1 = 0.8653

40

50

60

30 35 40 45
Vote Share

S
ea

t S
ha

re

β̂1 = 0.9653

40

50

60

30 35 40 45
Vote Share

S
ea

t S
ha

re

β̂1 = 1.0653

1000

1500

2000

2500

3000

0.6 0.7 0.8 0.9 1.0 1.1

β̂3

S

Least Squares Fit

Note: Five different choices of β̂1 and their implications for the OLS fit criterion S. The first
five panels select different values of the slope estimate, whereas the last panel shows the OLS
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equal to zero.3 It is easy to demonstrate that the partial derivatives are given

by:

∂S

∂β0
= −2

n∑
i=1

(yi − β0 − β1xi)

∂S

∂β1
= −2

n∑
i=1

(yi − β0 − β1xi)xi

When we set the first partial derivative to 0, then we get
∑

i yi − nβ0 −
β1
∑

i xi = 0 or nȳ − nβ0 − β1nx̄ = 0. Adding nβ0 to both sides, dividing by

n, and substituting the estimator for β1 we obtain

Equation 3.3: OLS Estimator of the Intercept

β̂0 = ȳ − β̂1x̄,

where ȳ and x̄ are the sample means of the dependent variable and the predictor,

respectively. This is what we called a in the previous two chapters. Setting

the second partial derivative to 0, we get
∑

i xiyi − β0
∑

i xi − β1
∑

i x
2
i =

0. Substituting the OLS estimator of the intercept, this becomes
∑

i xiyi −
β̂0
∑

i xi − β1
∑

i x
2
i =

∑
i xiyi − (ȳ − β1x̄)nx̄− β1

∑
i x

2
i =

∑
i xiyi − nx̄ȳ −

β1(
∑

i x
2
i − nx̄)2 = 0. Solving for β1, we get

Equation 3.4: OLS Estimator of the Slope

β̂1 =

∑
i xiyi − nx̄ȳ∑
i x

2
i − nx̄2

=
sXY
s2
X

Here sXY is the sample covariance between X and Y and s2
X is the sample

variance of X. This is what we called b in the previous two chapters.

Let us illustrate the OLS estimators again using the Labour vote and seat

share data from Table 1.1. For these data, sXY = 40.94 and x2
X = 47.31.

Hence, β̂1 = 40.94/47.31 = 0.87. This is the slope estimate that we used to

3See Appendix A for a discussion of partial derivatives.
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draw the regression line in Figure 1.2. It is also easily shown that ȳ = 47.54

and x̄ = 39.61. Thus, applying the formula for β̂0, we obtain an OLS intercept

estimate of 47.54− 0.87 · 39.61 = 13.27. This is the intercept estimate that we

used to draw the regression line in Figure 1.2.

The OLS slope estimator has several features. First, if sXY = 0, then

the slope is equal to 0. Thus, a lack of covariance or correlation between

the dependent variable and the predictor causes the regression line to be flat.

Second, the slope estimator is not defined if s2
X = 0, as we would be dividing

by zero. We know that x2
X = 0 when X is constant in the sample. The second

property thus means that we cannot explain a variable (Y ) with a constant.

The intercept estimator also has an important feature. Rearranging terms, we

see that ȳ = β̂0 + β̂1x̄. This means that the regression line goes through (x̄, ȳ).

3.3 Method of Moments Estimation

A second approach to estimating the linear regression model is method of mo-

ments or MM. The advantage of this approach is that it guarantees consistent

estimators and requires nothing more than a reliance on the law of large num-

bers. The approach is used widely in statistics, in particular in the context of

models for heteroskedastic, time series, and panel data (see Part III). As such,

it is useful to introduce its logic in this chapter.

3.3.1 General Principle

The object of method of moment estimators is to minimize the difference be-

tween population and sample moments. The vehicle for accomplishing this goal

is the so-called moment condition, which may be written as

Equation 3.5: Moment Condition

m(θ) = E[f(yi, θ)] = 0

Here θ is a generic parameter and f(.) is some function, which in expectation
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is equal to 0. We now formulate the sample moment equivalent of the moment

condition, which is known as the sample moment condition:

Equation 3.6: Sample Moment Condition

m̄(θ) =
1

n

∑
i

f(yi, θ) = 0

The law of large numbers states that, for large values of n, m̄(θ) = m(θ). Thus,

the sample moment condition can serve as a basis for selecting a consistent

estimator of θ. We do this by selecting an estimator such that Equation 3.6 is

satisfied.

In general, it is possible that we have multiple moment conditions. When

the number of moment conditions is exactly equal to the number of parameters,

then we are dealing with classical method of moments estimation. When the

number of moment conditions exceeds the number of parameters, then we are

in the domain of generalized method of moments (GMM) estimation.

As an example of method of moments estimation, let us consider the problem

of estimating the population mean for some distribution. We formulate the

following moment condition:

E[y]− µ = 0

This is a trivial restatement of the definition of the population mean: µ = E[y].

The sample moment condition is

1

n

∑
i

yi − µ = 0

Adding µ to both sides of the equation yields µ̂ =
∑

i yi/n = ȳ. Thus, the

sample mean is the method of moments estimator of µ. This is an example

of classical methods of moments estimation because the number of moment

conditions is identical to the number of parameters, in this case one.
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3.3.2 Application to Simple Regression Analysis

Moment conditions often follow automatically from the model that we formu-

late. This is true, too, of the linear regression model. This model entails the

following important moment conditions:

1. E[εi] = 0

2. E[εixi] = 0

These conditions all involve moments (specifically, means, variances, and co-

variances) and derive directly from the model assumptions (Assumptions 2.3

and 2.6).

Using the definition of the error term, the moment conditions may be written

as:

E[εi] = E[yi − β0 − β1xi] = 0

E[εixi] = E[(yi − β0 − β1xi)xi] = 0

The sample moment conditions are

1

n

∑
i

(yi − β0 − β1xi) = 0

1

n

∑
i

(yi − β0 − β1xi)xi = 0

The first condition produces the estimator of the intercept. It may be written as∑
i yi/n−β0−β1

∑
i xi/n = 0, which is equal to ȳ−β0−β1x̄ = 0. Substituting

the estimator for β1 and rearranging terms, we obtain

Equation 3.7: MM Estimator of the Intercept

β̂0 = ȳ − β̂1x̄

It is easily verified that this estimator is identical to the OLS estimator. The

estimator for β1 follows from the second sample moment condition. This may
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be written as
∑

i xiyi/n−β0
∑

i xi/n−β1
∑

i x
2
i /n = 0 or

∑
i xiyi/n−β0x̄−

β1
∑

i x
2
i /n = 0. Substituting the expression for β0 from the first sample

moment condition, we get
∑

i xiyi/n − (ȳ − β1x̄)x̄ − β1
∑

1 x
2
i /n = 0, which

is equal to
∑

i xiyi/n − x̄ȳ − β1(
∑

i x
2
i /n − x̄2) = 0. The first term on the

left-hand side is equal to sXY , whereas the second term is equal to β1s
2
X , so

that we can also write the second sample moment condition as sXY −β1s
2
X = 0.

Rearranging terms and solving for β1 then yields:

Equation 3.8: MM Estimator of the Slope

β̂1 =
sXY
s2
X

Once more, this is identical to the OLS estimator that we derived earlier.

3.4 Maximum Likelihood Estimation

As a class, (ordinary) least squares estimators are not automatically associated

with desirable properties. Method of moment estimators are consistent but do

not automatically possess other desirable qualities such as efficiency. Are there

estimators, which we know to possess a broad class of desirable properties? The

answer is affirmative and one such estimator is the maximum likelihood esti-

mator (MLE). Under certain so-called regularity conditions, MLEs are known to

be consistent, asymptotically efficient, and asymptotically normally distributed.

Note that these are all asymptotic properties; in finite samples, the properties

of MLEs may not be so desirable. These asymptotic results come at a price,

however, for MLEs require that we exploit Assumption 2.2: the errors are nor-

mally distributed. In OLS, we did not have to invoke this assumption, but in

MLE we cannot avoid it. In addition, we assume that the sample observations

are statistically independent. In sum, we are assuming that the errors and, by

extension, the values of the dependent variable are normally and independently

distributed (n.i.d).
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3.4.1 The General Principle

The intuition behind maximum likelihood estimation is actually quite simple.

Imagine, we knew the entire distribution of a random variable, including the pa-

rameter values. Then it could be easily seen that sampling from the distribution

is differentially likely to produce certain samples. A simple example can show

this. Assume that Y follows a binomial distribution with parameter π = .5.

An application would be the flipping of a fair coin. Say that we sample n = 2

observations, e.g., we flip the coin twice. What is more likely, that we observe

one instance of heads or two instances of heads? Evaluating the binomial prob-

ability mass function for y = 1 yields a probability of .5. On the other hand,

evaluating it for y = 2 yields a probability that is only half that size. Thus,

we would say that obtaining one instance of heads is more likely than obtaining

two instances.

In this example, we assumed that we know the parameters and want to

derive implications for the data that we are likely to observe. In the estimation

problem, this is reversed: we know the data and seek to draw inferences about

the parameters. But we can reverse the logic and ask which parameters are most

likely to have given rise to the data at hand. This is the idea of maximizing the

likelihood. For example, in the case of the binomial distribution, a value of .5

of the parameter π is most likely to have given rise to one instance of heads in

two trials.

One of the main contributors to maximum likelihood, Sir Ronald Fisher,

explained the idea in the following way:

The likelihood that any parameter (or set of parameters) should

have any assigned value (or set of values) is proportional to the

probability that if this were so, the totality of observations should

be that observed. (Fisher, 1922, 310).

The parameter value(s) that maximize the likelihood are the ones that we select

as our estimates.

From Fisher, it follows that the first thing that we have to do is to charac-

terize the likelihood of the data. Our data consist of observations y1, y2, · · · , yn
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that are the realized values of the random variable Y . The likelihood is de-

fined as the joint distribution over these observations, which can be computed

only if the probability density or mass function of Y is known. If we have this

information, then the likelihood is given by

L(y1, · · · , yn|θ) ≡ f(y1, · · · , yn|θ)

where f is the probability mass or density function. We have assumed here that

the same mass or density applies to all observations, i.e., they are identically

distributed. If we can also assume that the observations are independent, as

would be the case under simple random sampling, then we can simplify the

likelihood. From probability theory, we know that the joint distribution is equal

to the product of the marginal distributions if (and only if) the random variables

are statistically independent. Under this assumption,

Equation 3.9: Likelihood Function

L(y1, · · · , yn|θ) =
n∏
i=1

f(yi|θ)

Here,
∏

is the product operator, which means that the terms following it are

being multiplied.

The maximum likelihood estimator of θ is the value that maximizes the

likelihood of the data:

Equation 3.10: Maximum Likelihood Estimator

θ̂ = argmax
θ∈Θ

L(y1, · · · , yn|θ)

Here Θ is the so-called parameter space, i.e., the set of feasible values of the

parameter. For simple problems, finding the MLE is a simple process of taking

the first derivative, setting it to zero, and solving for θ.
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In practice, it is usually not the likelihood that is being maximized but the

log of the likelihood. We do this for reasons of convenience, since taking the

logarithm will turn the product operator into a sum operator, which is easier to

process. Consequently, we can write

Equation 3.11: Maximizing the Log-Likelihood

θ̂ = argmax
θ∈Θ

`

= argmax
θ∈Θ

lnL

= argmax
θ∈Θ

n∑
i=1

ln f(yi|θ)

where ` = lnL is the so-called log-likelihood function.

As an example, let us consider the normal distribution. Imagine that our

data consist of n independent draws from the normal distribution N (µ, σ). We

know that the normal probability density function is

f(y|µ, σ) =
1

σ
√

2π
e−

1
2

(y−µ)2

σ2

We now take the natural logarithm of this function in order to produce the

contribution to the log-likelihood of a single sample unit:

`i = ln f(yi|µ, σ) = − lnσ − .5 ln(2π)− .5(yi − µ)2

σ2

Summing the individual contributions to the log-likelihood, we become

` =

n∑
i=1

`i = −n lnσ − .5n ln(2π)− 1

2σ2

n∑
i=1

(yi − µ)2

The MLEs are now those values of µ and σ for which ` reaches its maximum.

To find them, we start by taking the partial derivatives of ` with respect to µ



3.4. MAXIMUM LIKELIHOOD ESTIMATION 51

and σ, respectively:

∂`

∂µ
=

1

σ2

n∑
i=1

(yi − µ)

∂`

∂σ
= −n

σ
+

∑n
i=1(yi − µ)2

σ3

We now set the first partial derivative equal to zero and solve for µ. It is easily

shown that this produces

µ̂ = ȳ

Setting the second partial derivative equal to zero and solving for σ yields

σ̂ =

√∑n
i=1(yi − ȳ)2

n

Evaluation of the second derivatives demonstrates that these two estimators

indeed maximize ` and are thus proper MLEs.

Comparison of the MLEs with the OLS estimators that we derived earlier

reveals that they are identical in the case of the normal distribution. This

happens frequently in statistical estimation. Still, there is a benefit to showing

this equivalence. MLEs are consistent, asymptotically efficient, and normally

distributed. Having shown the equivalence of the OLS estimators to the MLEs,

this means we can now assume, for example, that ȳ is a consistent estimator.

3.4.2 Application to Simple Regression Analysis

Let us apply maximum likelihood to the simple regression model. According to

Equation 2.4, yi ∼ N (µi, σ), so that

`i = − lnσ − .5 ln(2π)− 1

2σ2
(yi − µi)2

From equation 2.5, we know that µi = β0 + β1xi, so that we may also write

`i = − lnσ − .5 ln(2π)− 1

2σ2
(yi − β0 − β1xi)

2
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Aggregating over all sample units produces the following estimation criterion:

Equation 3.12: ML Estimation of the Simple Regression Model

` = −n lnσ − .5n ln(2π)− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2

β̂0, β̂1, σ̂ = argmax
β0,β1∈R,σ>0

`

We proceed in the usual manner by taking the first partial derivatives of the

log-likelihood with respect to the parameters:

∂`

∂β0
=

1

σ2

n∑
i=1

(yi − β0 − β1xi)

∂`

∂β1
=

1

σ2

n∑
i=1

(yi − β0 − β1xi)xi

∂`

∂σ
= −n

σ
+

1

σ3

n∑
i=1

(yi − β0 − β1xi)
2

We see that, apart from a multiplier, the partial derivative of ` with respect

to β0 is identical to the partial derivative of S with respect to β0, which we

analyzed earlier. It is no surprise then that the MLE of β0 is identical to the

OLS estimator of that parameter:

Equation 3.13: MLE of the Intercept

β̂0 = ȳ − β̂1x̄

Similarly, the partial derivative of ` with respect to β1 is, short of a multiplier,

identical to the partial derivative of S with respect to β1. Here, too, then the

MLE is identical to the OLS estimator:
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Equation 3.14: MLE of the Slope

β̂1 =

∑
i xiyi − nx̄ȳ∑
i x

2
i − nx̄2

=
sXY
x2
X

Turning to the remaining partial derivative, we can derive the MLE for σ

by setting this derivative equal to 0. Doing this produces nσ2 =
∑n

i=1(yi −
β0−β1xi)

2. Substituting the MLEs for the regression coefficients, this becomes

nσ2 =
∑n

i=1(yi − β̂0 − β̂1xi)
2. From the definition of the SSE, we know that

the right-hand side is equal to the sum of the squared residuals. If we now

further divide both sides by n and take the square root, we obtain the following

estimator:

Equation 3.15: MLE of the Standard Deviation

σ̂ =

√∑n
i=1 e

2
i

n
=

√
SSE

n

That OLS and MLE produce identical results can be easily shown for the

data from Table 1.1. Imagine that we knew β̂0 and σ̂, then the only remaining

parameter to estimate is β1. Let us vary the values of this parameter between

0.5 and 1.0. Figure 3.2 shows the OLS and ML fit functions, which clearly reach

their minimum and maximum, respectively, at β̂1 = 0.87.

3.5 Properties of the Estimators

Now that we have derived the estimators of the regression parameters, the next

question we should ask is why we should trust them. What are their properties?

We now consider this question.
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Figure 3.2: A Comparison of OLS and ML
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3.5.1 Regression Coefficients

Finite Sample Properties

Finite sample properties refer to those properties of estimators that hold when

the sample size is assumed to be finite. This includes situations in which the

sample size is small, e.g., less than 25. We contrast finite sample properties with

asymptotic properties, which hold when the sample size approaches infinity.

In regression analysis, the finite sample properties of the regression coeffi-

cients β̂0 and β̂1 are covered by the Gauss-Markov theorem:

Theorem 3.1: Gauss-Markov Theorem

Assuming that Assumptions 2.3-2.6 hold true, the OLS

estimators of β0 and β1 are BLUE: best linear unbiased

estimators.

Since the MLEs of the regression coefficients are identical to the OLS estimators,

the theorem of course also applies to them.

We shall postpone the proof of the theorem until Chapter 5. For now it is

sufficient to understand both the importance and the limitations of the theorem.

The theorem should be read in terms of consecutive sets. Specifically, within

the set of conceivable estimators of the regression coefficients, there resides

a subset of so-called linear estimators. They are called this because they are

linear functions of the data for the dependent variable. Within the subset of

linear estimators, there is a subset that is unbiased so that E[β̂0] = β0 and

E[β̂1] = β1. Finally, within the subset of linear unbiased estimators, there are

estimators that are best in the sense of having the smallest variance. From

the Gauss-Markov theorem, we thus know that the OLS/ML estimators of the

regression coefficients are unbiased and efficient. These are desirable properties,

indeed. On the average, our estimator gets it right and if it gets it wrong, then

the errors are smaller than those obtained from other linear unbiased estimators.

Nice as all of this may sound, you should keep in mind that the Gauss-

Markov theorem is contingent on a number of assumptions. First, we assume

that the predictor and the errors are uncorrelated. We already discussed that
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this is a hefty assumption and if it fails, the OLS/ML estimators are no longer

unbiased. Second, we assume that the errors are zero in expectation; if this

assumption fails, then the OLS/ML estimator of β0 is no longer unbiased. Third,

we assume homoskedasticity and the absence of autocorrelation. If these two

assumptions fail, then the OLS/ML estimators are still unbiased but no longer

“best.” Specifically, it will be possible to find other unbiased estimators with

an even smaller variance.

We should take notice of another limitation of the Gauss-Markov theorem.

The OLS/ML estimators may be linear unbiased estimators with the smallest

variance. This does not mean, however, that there are not other estimators that

are biased but have a smaller variance than OLS/MLE. We shall take advantage

of this in Chapter 10.

Asymptotic Properties

The asymptotic properties follow from the fact that the estimators of the regres-

sion coefficients are MLEs (and MMEs). Assuming that the model is correct—

i.e., the various regression assumptions hold—we thus know that the OLS esti-

mators are consistent: plimn→∞ β̂0n = β0 and plimn→∞ β̂1n = β1. In addition,

we know that the asymptotic sampling distributions of β̂0 and β̂1 are normal.

Later in this chapter, we shall use this property for purposes of hypothesis test-

ing.

3.5.2 Error Variance

Finite Sample Properties

From Equation 3.12, we know that the MLE of σ2 is given by σ̂2 = n−1
∑

i e
2
i .

However, this estimator is biased. Specifically,

E[σ̂2] =
n− 2

n
σ2 6= σ2

This produces a bias of −2σ2/n, which means that the error variance tends to

be underestimated. We shall leave the proof of this result for Chapter 5, but

the intuition for the bias is quite simple. The formula for σ̂2 assumes that we
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know the values of β̂0 and β̂1. In reality, these values are being estimated, which

introduces sampling variation. The uncertainty associated with the estimation of

the two regression coefficients is not taken into consideration in the formula for

σ̂2, thus resulting in an underestimate of the total uncertainty in the regression.

An unbiased estimator can be derived quite easily. All we have to do is to

multiply σ̂2 by a factor of n/(n− 2). This yields

Equation 3.16: Unbiased Estimator of the Error Variance

s2 =

∑n
i=1 e

2
i

n− 2
=
SSE

n− 2
,

which is known as the mean squares due to error (MSE). Although this

estimator is unbiased, it has a greater sampling variance than σ̂2.

We can illustrate the computation of the MSE using the data from Table 1.2.

In Chapter 1, we saw that SSE = 926.35 (see Table 1.3). The sample size is

n = 19. Consequently, s2 = 926.35/(19− 2) = 54.49 and s =
√

56.79 = 7.38.

Asymptotic Properties

Both σ̂2 and s2 are consistent estimators. As long as the true variance around

the regression line is not too small, then these estimators are asymptotically

approximately normally distributed. However, we typically do not rely on this

asymptotic distribution for purposes of constructing confidence intervals (see

Section 3.6).

3.6 Standard Errors

3.6.1 Regression Coefficients

The coefficients β̂0 and β̂1 are estimates and hence, they display sampling fluc-

tuation. Thus, we would want to know their variance. Postponing the proof
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until Chapter 5, it is possible to demonstrate that

V [β̂0] = σ2

(
1

n
+

x̄2∑
i(xi − x̄)2

)
V [β̂1] =

σ2∑
i(xi − x̄)2

provided that the errors are homoskedastic and display no autocorrelation. Of

course, these results depend on the variance around the population regression

line, which is unknown. Substituting the unbiased estimator s2 for σ2, the

estimated variances of the regression coefficients are:

Equation 3.17: Estimated Variances of the Regression Coefficients

V̂ [β̂0] = s2

(
1

n
+

x̄2∑
i(xi − x̄)2

)
V̂ [β̂1] =

s2∑
i(xi − x̄)2

Notice the hat on top of the V, which indicates that we are dealing with an

estimated variance. The standard errors are equal to the square roots of the

estimated variances:

ŜE[β̂0] =

√
V̂ [β̂0]

ŜE[β̂1] =

√
V̂ [β̂1]

We can apply these formulas to the Labour vote and seat share data from

Table 1.1. Earlier, we saw that n = 19, x̄ = 39.61, s2
X = 47.31, and s2 = 54.49.

From this, it follows that
∑

i(xi − x̄)2 = (n − 1)s2
X = 851.66. We now can

compute the estimated variances of the intercept and slope estimators as

V̂ [β̂0] = 54.49

(
1

19
+

39.612

851.66

)
= 103.26

V̂ [β̂1] =
54.49

851.66
= 0.06
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Consequently, ŜE[β̂0] =
√

103.26 = 10.16 and ŜE[β̂1] =
√

0.06 = 0.25.

One aspect that we have not yet considered is that the estimators of the

intercept and slope are not independent. It can be demonstrated that

Equation 3.18: Covariance between β̂0 and β̂1

Ĉov[β̂0, β̂1] = − s2x̄∑n
i=1(xi − x̄)2

= −x̄V̂ [β̂1]

For the data from Table 1.1, this means that the estimated covariance between

the intercept and slope estimators is −39.61 · 0.06 = −2.53. We shall need this

covariance to compute the confidence interval around the regression line.

3.6.2 Error Variance

For the error variance, it can be demonstrated (e.g., Kmenta, 1997) that

Equation 3.19: Variance of the MSE

V [s2] =
2σ4

n− 2

This result again depends on the assumptions that the errors are homoskedastic

and uncorrelated.

3.6.3 Predicted Values

Finally, consider the standard error of the predicted values. As is shown in

Appendix C.1, the variance of ŷi is given by

V [ŷi] = σ2

(
1

n
+

(xi − x̄)2∑2
i=1(xi − x̄)2

)

Substituting the unbiased estimator of the variance we get
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Equation 3.20: Estimated Variance of the Predicted Values

V̂ [ŷi] = s2

(
1

n
+

(xi − x̄)2∑2
i=1(xi − x̄)2

)

The square root of Equation 3.16 gives the standard error of the predicted

values. Clearly, this is smallest when we select xi = x̄.

3.7 Confidence Intervals

3.7.1 Regression Coefficients

The formulas that we derived in Equations 3.3-3.4, 3.7-3.8, and 3.13-3.14 pro-

duce point estimates of the regression coefficients. These estimates are based

solely on the information in our sample and do not at all consider the fact that,

due to sampling fluctuation, other estimates would have been obtained in dif-

ferent samples. To take the sampling fluctuation into account, it is useful to

construct confidence intervals, i.e., to produce interval estimates.

Let the chosen level of the confidence interval be 1 − α. Then it can be

demonstrated (see Chapter 5) that the confidence intervals for the intercept

and slope are

Equation 3.21: Confidence Intervals Regression Coefficients

β̂0 − tn−2,α
2
ŜE[β̂0] ≤ β0 ≤ β̂0 + tn−2,α

2
ŜE[β̂0]

β̂1 − tn−2,α
2
ŜE[β̂1] ≤ β1 ≤ β̂1 + tn−2,α

2
ŜE[β̂1]

Here tn−2,α
2

is a value of a t-distribution with n − 2 degrees of freedom such

that a probability of α
2 remains in each tail.

For the Labour vote and seat share data from Table 1.1, we need to reference

the t19−2-distribution. Imagine that we want to obtain the 95% confidence

interval. Then tn−2,α
2

= 2.11. Using the estimates and their standard errors
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that we derived earlier, we obtain the following confidence intervals:

13.27− 2.11 · 10.17 ≤ β0 ≤ 13.27 + 2.11 · 10.17

0.87− 2.11 · 0.25 ≤ β1 ≤ 0.87 + 2.11 · 0.25,

or −8.17 ≤ β0 ≤ 34.71 and 0.33 ≤ β1 ≤ 1.40. The correct interpretation of

these confidence intervals is that, if they would be computed time and again in

different samples of the same size, 95 percent of the confidence intervals would

include the true intercept and slope, respectively.

3.7.2 Error Variance

It is relatively rare that we compute a confidence interval for the error variance

but, for the sake of completeness, we discuss the formula here. The starting

point is the well-known result from mathematical statistics that

(n− 2)s2

σ2
=
SSE

σ2
∼ χ2

n−2

(e.g., Kmenta, 1997). If the chosen confidence interval is 1− α, then

Pr

[
χ2
n−2,1−α

2
≤ SSE

σ2
≤ χ2

n−2,α
2

]
= 1− α

Rearranging terms now yields

Equation 3.22: Confidence Interval Regression Variance

SSE

χ2
n−2,1−α

2

≤ σ2 ≤ SSE

χ2
n−2,α

2

For the data in Table 1.1, we can compute a 95% confidence interval by

setting α = .05. It can be easily demonstrated that χ2
n−2,1−α

2
= χ2

17,.975 =

30.19 and χ2
n−2,α

2
= χ17,.025 = 7.56. We already saw that SSE = 54.49. It is

then easily shown that 1.80 ≤ σ2 ≤ 7.20.
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3.7.3 Conditional Expectation Function

When depicting the regression line, it is useful to depict its confidence interval

as well. It can be demonstrated (see Chapter 5) that

ŷi − (β0 + β1xi)

ŜE[ŷi]
∼ tn−2

From this, we can immediately derive a confidence interval for β0+β1xi = E[yi]:

Equation 3.22: Confidence Interval Around the Regression Line

ŷi − tn−2,α
2
ŜE[ŷi] ≤ E[yi] ≤ ŷi + tn−2,α

2
ŜE[ŷi]

Figure 3.3 illustrates the confidence band for the regression of Labour seat

shares on vote shares. The confidence band is at its smallest when we set the

Labour vote share to its mean value of 39.6 percent, since this is where the

standard error of ŷi is minimized. The further we move away from the mean

vote share in either direction, the wider the confidence interval becomes. This

means that we are less confident in our predictions when the Labour vote share

is assumed to be atypically small or large.

3.8 Testing Simple Hypotheses

Until now we have taken an in-depth look at the estimation of the simple regres-

sion model. There is another aspect of statistical inference, however, and this is

hypothesis testing. In simple regression analysis, the most common statistical

tests pertain to the slope coefficient. Under some conditions, it may also be

interesting to test hypotheses about the intercept, but this is less common.4 For

the remainder of this section, we consider only tests of hypotheses about the

slope. The procedure for testing hypotheses about the intercept is the same,

however.

4In Chapter 8, we shall encounter one context in which hypothesis tests of intercepts are
useful.
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Figure 3.3: Labour Seat Share Regression with Confidence Interval
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Note: Based on the data from Table 1.1. The black line represents the regression line, on
which the predicted values lay. The gray area around the regression line represents the 95%
confidence interval.
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If our interest is in testing a hypothesis about a single parameter such as

the slope coefficient, then we are testing a simple hypothesis. Typically, we

formulate the null hypothesis in terms of a particular parameter value. The

alternative hypothesis then encompasses all other values that the parameter

can take on. In the case of the slope coefficient, we can thus formulate

H0 : β1 = q

HA : β1 6= q

Here q is the hypothesized value of the slope coefficient in the population. Very

frequently, q = 0 so that the null hypothesis implies that the predictor has no

effect on the dependent variable in the population. A test of this hypothesis is

known as a significance test. Significance tests are the default tests performed

in R.

How would we go about testing H0? We should consider two different pieces

of information. First, we have an estimate of the slope and can compare this to

the hypothesized value. If β̂1 − q is large, regardless of the direction, then this

is a priori evidence against the null hypothesis. Second, we need to take into

consideration sampling fluctuation. What may look like an abnormally large

discrepancy between the estimate and the hypothesized value may, in fact, be

a fairly common occurrence when the null hypothesis is true. In that case, we

should probably not reject the null hypothesis. However, if the discrepancy is

indeed extreme, meaning that it occurs infrequently when the null hypothesis is

true, then we may take this as evidence against the null.

The various considerations imply that we compute our test statistic as

Equation 3.23: Test Statistic for the Slope

Let H0 : β1 = q. Then

t =
β̂1 − q
ŜE[β̂1]

To compute the p-value that is associated with the test statistic, we recognize

that it follows a tn−2-distribution. Thus, the p-value is equal to the probability
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of obtaining a test statistic as large as |t| or even larger in the t-distribution

when the null hypothesis is true.

To illustrate the test procedure, let us revisit the Labour vote and sear share

data from Table 1.1. We first test H0 : β1 = 0, which amounts to hypothesizing

that there is no relationship between the seat share that Labour receives and its

electoral performance measured in vote share. Imagine that we set our Type-I

error rate to .10; for a small sample like we have, this is a reasonable decision.

We have seen that β̂1 = 0.87 and ŜE[β̂1] = 0.25. Hence, t = 0.87/0.25 = 3.42.

When we now compute Pr > |t| using a t19−2-distribution, we obtain a p-value

of .00, which is far smaller than the Type-I error rate and leads us to reject H0.

We have statistically reliable evidence that there is a relationship between the

Labour vote share and its seat share in the House of Commons.

Now consider a different null hypothesis: H0 : β1 = 1. This hypothesis

implies that a vote increase of one percent translates into a seat increase of

one percent. The test statistic is now computed as t = (0.87 − 1.00)/0.25 =

−0.53. The p-value is now Pr > | − 0.53|; using again the t17-distribution, this

yields 0.60. Since this exceeds the Type-I error rate, we fail to reject the null

hypothesis.

The procedure outlined here concern so-called two-sided tests. However,

they can be modified easily to accommodate one-side tests. For example, a

reasonable set of hypotheses for the Labour seat and vote share data is

H0 : β1 ≤ 0

HA : β1 > 0

The alternative hypothesis reflects the belief that there is a positive linear rela-

tionship between Labour vote and seat shares. The null hypothesis states that

there is either no relationship or a negative relationship. We would now com-

pute the test statistic as before. However, the p-value is now defined as Pr > t,

since only positive test statistics are evidence against the null hypothesis. We

can now take the earlier p-value from the two-sided test and cut it in half. This

produces p = .00, so that H0 is rejected.
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3.9 Statistical Inference Using R

So far, we have done a lot of computations by hand. There is no reason to

do this, however, as computers are much faster and adept at performing these

computations. Regression analysis is so ubiquitous that it is a standard part of all

statistical software programs. R alone contains several routines for performing

regression analysis. Here, we shall focus on the lm command, which stands for

linear models.5 The basic syntax for simple regression analysis is

o b j e c t <− lm ( y ˜ x , data = df )

summary( o b j e c t )

Here, object is the name of the object that is to store the regression results,

y is the name of the dependent variable, x is the name of the predictor, and df

is the name of the data frame that contains y and x. If we run only the first

line of the program, then object is created but no results are shown on the

computer display. The second line takes care of this; after it has been run, a

summary of the regression results (see Figure 3.4) is obtained.

The lm command can be adjusted in a number of different ways. For ex-

ample, lm(y ∼ 0 + x, data = df) performs a regression through the origin.

And lm(y ∼ 1, data = df) fits an intercept only.

Let us apply the command to the Labour vote and seat share data from Table

1.1. Assume that we created a data frame called labour, which contains seat

as the dependent variable and vote as the predictor. We execute the following

command: seat.fit <- lm(seat ∼ vote, data = labour). The object

seat.fit now contains the regression results and is summarized in Figure 3.4.

We observe that the OLS/ML estimator of the intercept is 13.2670, whereas

the estimator for the slope coefficient associated with vote is 0.8653 (see the

box marked (B)). The estimated standard errors for the intercept and slope are

10.1615 and 0.2529, respectively (see the box marked (C)). The test statistic

for H0 : β0 = 0 is 1.306, whereas the test statistic for H0 : β1 = 0 is 3.421

5Other commands include glm and ols. The lm package, however, is used more commonly
for regression analysis and integrates well with a number of other packages that will prove
useful in subsequent chapters.
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Figure 3.4: R Regression Output for the Labour Seat Share Data

Note: Output from the lm command based on the data from Table 1.1. (A) = summary
of the residuals; (B) = OLS/ML estimates of the regression coefficients; (C) = estimated
standard errors of the regression coefficients; (D) = t-statistics for the null hypothesis that a
regression coefficient is 0 in the population; (E) p-values for the t-statistics; (F) = a graphical
indication of the level of significance; (G) =

√
MSE =

√
s2 = s plus an indication of the

degrees of freedom; and (H) = the coefficient of determination.

(see the box marked (D)). For a two-sided test, the p-value of the test statistic

for the intercept is 0.20908; for the test statistic associated with the slope, the

p-value is 0.00326 (see the box marked (E)). This means, that the intercept is

not statistically significant. The slope is statistically significant at the .01 level

(see the box marked (F)). This means that we would be able to reject the null

hypothesis with a Type-I error rate as low as 1 in 100. The spread around the

regression line is given by the “residual standard error,” which is the square root

of the MSE. In our case, this is 7.382. The degrees of freedom are 17 (see the

box marked (G)). The coefficient of determination or “multiple R-squared” is

0.4077 (see the box marked (H)). Within rounding error, all of these estimates

are identical to what we computed by hand in this and earlier chapters. Of final

relevance in the output is the information about the residuals (the box marked

(A)). For example, the fact that the median of the residuals is not zero calls

into question the normality assumption: in a normal distribution, the mean and

median are identical. While the output contains other information, this will

become relevant only after our discussion of multiple regression analysis.
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Once we have run the lm command, other information can be obtained

quite easily. For example, you will notice that R does not report the confidence

intervals for the regression coefficients. However, this can be rectified quite

easily by issuing the following command:

c o n f i n t ( o b j e c t , l e v e l = #)

Here, level is set to the desired confidence level. For our data, the 95%

confidence interval for the intercept is [−8.17, 34.71], whereas it is [0.33, 1.40]

for the slope.

It is also quite easy to obtain fitted values (ŷi) and residuals (ei) for the

regression model, as can be seen below:

s e a t . r e s <− r e s i d u a l s ( s e a t . f i t )

s e a t . p red <− f i t t e d . v a l u e s ( s e a t . f i t )

The object seat.res now contains the residuals and seat.pred contains the

predicted values.

Figure 3.3 was generated using the package effects, which is an extremely

useful add-on to lm (Fox, 2003). This program is not a part of the standard R

installation and, thus, has to be downloaded first. Further, it will have to be

loaded into memory in order to use it. For Figure 3.3, the following syntax was

used:

l i b r a r y ( e f f e c t s )

p lot ( e f f e c t ( ” v o t e ” , s e a t . f i t ) , main = ”” ,

x l a b = ” Vote Share ” , y l a b = ” Seat Share ” )

3.10 Conclusion

In this chapter, we explored statistical inference of the simple regression model.

We derived estimators for the various parameters of the model, to wit β0, β1,

and σ. We also demonstrated that, under certain conditions, the estimators
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of the intercept and slope coefficients are unbiased, efficient, consistent, and

asymptotically normally distributed. We discussed both point and interval es-

timation and we demonstrated test procedures for simple hypotheses. Finally,

we showed how all of this can be implemented in R.

We have done about as much as we can with the simple regression model.

The model is inherently limited in that it allows for a single predictor only. The

next logical step is to expand the linear regression model so that it can include

multiple predictors. This brings us to the topic of multiple regression analysis,

which is taken up in the next part of this book.
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Multiple Regression Analysis
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Chapter 4

The Multiple Regression Model

The multiple regression model is a linear regression model that allows for multi-

ple predictors.1 When we argued earlier that the regression model remains the

work horse of quantitative social science, we really had the multiple regression

model in mind. The fact that multiple predictors are allowed greatly expands

the versatility of regression analysis. In this part of the book, we shall see several

examples of this, for example, when we create polynomial regression models,

include discrete predictors, or model interaction effects.

4.1 The Population Regression Model

4.1.1 Scalar Notation

The simplest extension of the simple regression model is to add a second pre-

dictor. For example, if we believe that both X and Z influence Y , then we

could specify the following population regression model:

yi = β0 + β1xi + β2zi + εi

1The model is sometimes referenced as the multivariate regression model, but this is a
mistake. The term multivariate regression has a specific meaning in statistics: it pertains to
regression models with multiple dependent variables. Such models will not be considered in
this book.

71
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Figure 4.1: Regression Plane in a Model with Two Predictors
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Note: For each pair (xi, zi), the regression plane shows µi. In this graph, X and Z are
assumed to be uncorrelated.

This is identical to the simple regression model, except for the inclusion of the

values zi and their associated parameter β2. The model makes explicit that

Z is a predictor of Y . Less obvious from the equation, but still an essential

aspect of the model, is that X and Z can be correlated. In the estimation of

the effect of X, any overlap between Y and Z and between X and Z is taken

into consideration, as we shall see in Chapter 5. This means that β1 can be

viewed as a partial slope, i.e., a slope which is net of the effect of Z.

Corresponding to the population regression model is a population regression

function or conditional expectation function of the form

E[yi] = β0 + β1xi + β2zi = µi

This function constitutes a plane in a 3-dimensional space, as is illustrated in

Figure 4.1. Thus, we see that the multiple regression equivalent of the regression

line is a plane.

The expected values may be compared to the actual values of Y . In most

cases, such a comparison will show a discrepancy, which is absorbed into an
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error term:

εi = yi − µi
= yi − β0 − β1xi − β2zi

As was the case in simple regression analysis, the errors are attributed to omit-

ted predictors, measurement error in the dependent variable, and the inherent

unpredictability of human behavior.

The inclusion of two predictors is a vast improvement over the simple re-

gression model. Still, we would want to include even more predictors (although

such inclusion should always be weighted against the goal of simplification that

is characteristic of modeling). Fortunately, it is easy to extend the model. To do

so, let us designate the predictors as X1, X2, · · · , XK , where K is an arbitrary

integer. The approach of indicating predictors as Xk (where k = 1, 2, · · · ,K)

is more flexible than using different letters from the alphabet, which, in English,

would limit us to 26 predictors. With this notational convention in place, the

multiple population regression model can now be written as:

Equation 4.1: Multiple Population Regression Model

yi = β0 + β1xi1 + β2xi2 + · · ·+ βKxiK + εi

The multiple conditional expectation function is given by

Equation 4.2: Multiple Population Regression Function

µi = β0 + β1xi1 + β2xi2 + · · ·+ βKxiK

= β0 +
K∑
k=1

βkxik

For the errors, we have
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Equation 4.3: Errors

εi = yi − µi

= yi − β0 −
K∑
k=1

βkxik

It is conventional to add a number of regression assumptions to the model, but

we shall hold off on this until section 4.2.

4.1.2 Matrix Notation

The multiple regression model can be written more compactly when we adopt

matrix notation.2 In addition to simplification, the use of matrix notation also

allows for a useful geometric interpretation of the model. For these reasons,

even applied users typically formulate the regression model in matrix form.

Matrix formulation of the multiple regression model starts with the recogni-

tion that Equation 4.1 specifies a system of n equations, one for each sampling

unit. Specifically,

y1 = β0 + β1x11 + β2x12 + · · ·+ βKx1K + ε1

y2 = β0 + β1x21 + β2x22 + · · ·+ βKx2K + ε2

...
...

yn = β0 + β1xn1 + β2xn2 + · · ·+ βkxnK + εn

Like any other system of equations, this system can be represented in matrix

terms. First, we collect the different elements of the regression model into

vectors and matrices, making sure that similar elements are retained in the

same matrix/vector. Next, we bring those vectors and matrices together in an

equation that adequately captures the full system.

2This notation is introduced in Appendix B, which you should master before proceeding
with the current section.
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Let us define three vectors. First, y is a vector of n elements containing the

data on the dependent variable:

y =


y1

y2

...

yn


Second, ε is a vector of n elements containing the errors:

ε =


ε1

ε2

...

εn


Third, β is a vector of K + 1 regression coefficients:

β =


β0

β1

· · ·
βK


In addition, we define a n× (K + 1) matrix X that contains a constant as well

as the data on the predictors:

X =


1 x11 x12 · · · x1K

1 x21 x22 · · · x2K

...
...

...
. . .

...

1 xn1 xn2 · · · xnK


The first column in X contains the constant, which is 1 for all units and has β0

as its associated parameter. The second column contains the data on the first

predictor, which has β1 as its associated parameter. The third column contains

the data on the second predictor, which has an associated parameter of β2, etc.

We have now captured all of the information in the system of equations that
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Table 4.1: FDI in Four African Countries in 2012

FDI GDP Political
Country i Per Capita Per Capita Stabiliy
Botswana 1 73.39 7254.56 88.2
Equatorial Guinea 2 2736.67 22404.76 53.1
Nigeria 3 42.06 2742. 22 3.3
Uganda 4 33.16 551.38 19.4

Note: Data from the World Bank. FDI and GDP are mea-
sured in constant USD. Stability is a percentile rank.

is Equation 4.1. The only thing that is left to do is to place these components

together in an equation, to wit

Equation 4.4: Regression Model in Matrix Form

y = Xβ + ε

This is one of the most important equations in this book, one that we shall

work with extensively throughout.

Because Equation 4.4 is so important, it may be useful to illustrate its

operation. For this, we consider the data in Table 4.1. This data lists the per

capita foreign direct investment (FDI), per capita GDP, and political stability

values for four African countries in 2012. If we treat per capita FDI as the

dependent variable, then we can formulate the following model

FDIi = β0 + β1GDPi + β2Stability + εi

Collecting the data on the dependent variable we get y> = (y1 y2 y3 y4) =

(73.39 2736.67 42.06 33.16). Here the > symbol denotes the transpose, i.e.,

the operation that turns the column vector y into a row vector. In a similar vein,

we can define ε> = (ε1 ε2 ε3 ε4), which is the vector of errors for Botswana,

Equatorial Guinea, Nigeria, and Uganda (in that order). The vector β> =
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(β0 β1 β2) is the vector of regression coefficients. Finally, we define

X =


1 7254.56 88.2

1 22404.76 53.1

1 2742.22 3.3

1 551.38 19.4


Here, the first column contains the constant, the second column contains per

capita GDP, and the third column contains political stability. Alternatively, the

first row contains the data on the predictors for Botswana, the second row for

Equatorial Guinea, the third row for Nigeria, and the fourth row for Uganda.

Equation 4.4 states that y = Xβ + ε recovers four regression equations,

one for each of the four countries in the data. To see if this is the case we begin

by expanding Xβ:
1 7254.56 88.2

1 22404.76 53.1

1 2742.22 3.3

1 551.38 19.4


 β0

β1

β2

 =


1 · β0 + 7254.56 · β1 + 88.2 · β2

1 · β0 + 22404.76 · β1 + 53.1 · β2

1 · β0 + 2742.22 · β1 + 3.3 · β2

1 · β0 + 551.38 · β1 + 19.4 · β2


These are the linear predictors for Botswana, Equatorial Guinea, Nigeria, and

Uganda, respectively. To these, we add the vector ε:
1 · β0 + 7254.56 · β1 + 88.2 · β2

1 · β0 + 22404.76 · β1 + 53.1 · β2

1 · β0 + 2742.22 · β1 + 3.3 · β2

1 · β0 + 551.38 · β1 + 19.4 · β2

+


ε1

ε2

ε3

ε4

 =


1 · β0 + 7254.56 · β1 + 88.2 · β2 + ε1

1 · β0 + 22404.76 · β1 + 53.1 · β2 + ε2

1 · β0 + 2742.22 · β1 + 3.3 · β2 + ε3

1 · β0 + 551.38 · β1 + 19.4 · β2 + ε4





78 CHAPTER 4. THE MULTIPLE REGRESSION MODEL

Equating this to the vector y yields the following equations

73.39 = β0 + β1 · 7254.56 + β2 · 88.2 + ε1

2736.67 = β0 + β1 · 22404.76 + β2 · 53.1 + ε2

42.06 = β0 + β1 · 2742.22 + β2 · 3.3 + ε3

33.16 = β0 + β1 · 551.38 + β2 · 19.4 + ε4

The first regression equation pertains to Botswana, the second equation to

Equatorial Guinea, the third equation to Nigeria, and the fourth equation to

Uganda. The formula y = Xβ + ε indeed recovers the regression model for

each of the sample units.

Having demonstrated the basics of the matrix notation of the multiple re-

gression model. we can derive two further results that are of considerable im-

portance. First, the conditional expectation function is given by

Equation 4.5: Regression Function in Matrix Form

µ = E[y] = Xβ,

where µ> = (µ1 µ2 · · ·µn) is a vector of expected values of the dependent

variable derived from all of the predictors in the model. Second, the errors are

equal to

Equation 4.6: Errors in Matrix Form

ε = y − µ = y −Xβ

4.2 Regression Assumptions

It is customary to add a number of assumptions to the multiple regression

model. The basic assumptions do not fundamentally differ from those of the

simple regression model. The major difference is that we make one additional

assumption in the multiple regression model regarding the predictors. Using
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matrix notation, we can also write the assumptions a bit more compactly than

we did in Chapter 2.

As we did in Chapter 2, we divide the assumptions into three blocks: (1)

assumptions about the predictors; (2) assumptions about the errors; and (3)

assumptions about the relationship between the predictors and the errors. In

terms of the predictors we stipulate the following:

Assumption 4.1

1. X is fixed

2. X is full rank

Assumption 4.1.1 is a generalization of Assumption 2.1 to multiple predictors.

As such, we do not have to dwell on its meaning. Assumption 4.1.2, however,

is new. The matrix X is full rank as long as K + 1 ≤ n and there is no perfect

multicollinearity. Under perfect multicollinearity, one or more predictors in the

model are perfect linear functions of the remaining predictors. Effectively, this

means the data on these predictors contain no unique information, which makes

it impossible to estimate their effect. The topic of multicollinearity is discussed

in greater detail in Chapter 10.

The various assumptions about the error terms can be summarized as fol-

lows:

Assumption 4.2

ε ∼ N (0, σ2I)

This assumption has four parts. First, the elements of the vector ε are assumed

to be draws from a normal distribution (cf. Assumption 2.2). Second, this

normal distribution has a mean of 0 for each of the error terms: E[εi] = 0,

just as we stated in Assumption 2.3. Third, the errors are homoskedastic (cf.

Assumption 2.4) and display no autocorrelation (cf. Assumption 2.5). The

last two assumptions are implied by the specification of the variance-covariance
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matrix of the normal distribution, which is σ2I. The customary distribution that

we impose on ε has a covariance matrix of

Ω = E[εε>]

=


V ar[ε1] Cov[ε1, ε2] · · · Cov[ε1, εn]

Cov[ε2, ε1] V ar[ε2] · · · Cov[ε2, εn]
...

...
. . .

...

Cov[εn, ε1] Cov[εn, ε2] · · · V ar[εn]


By equating this to σ2I, we obtain

Ω = σ2


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1



=


σ2 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σ2


Consequently, V ar[ε1] = V ar[ε2] = · · · = V ar[εn] = σ2, which amounts

to saying there is homoskedasticity. Further, all of the off-diagonal elements,

which correspond to the covariance between the errors of different units, are

zero. Hence, none of the errors covary, which is the same as saying there is no

autocorrelation.

The final regression assumption that we make concerns the relationship

between the errors and the predictors:

Assumption 4.3

E[ε|X] = 0

This assumption generalizes Assumption 2.6. As such, it carries the same impli-
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cations: (1) omitted predictors are unrelated to the predictors in the model; (2)

the functional form has been correctly specified; and (3) there is no reciprocal

relationship between the dependent variable and any of the predictors.

4.3 The Sample Regression Model

While our primary interest lies with the population regression model, we cannot

study it directly because the regression coefficients and errors are unknown.

Hence, we rely on the sample regression model, which serves as an estimator of

the population regression model. We now consider this model in greater detail.

4.3.1 Scalar Notation

Consider again the population regression model with two predictors, X and Z.

In order to study this model, we estimate the parameters using the information

in our sample. We can then formulate the sample regression model as

yi = β̂0 + β̂1xi + β̂2zi + ei

Here β̂0, β̂1, and β̂2 are the OLS/MM/ML estimators of the regression coeffi-

cients, and ei is the residual. The sample regression function gives the fitted or

predicted values in the sample:

ŷi = β̂0 + β̂1xi + β̂2zi

Consequently,

ei = yi − ŷi

Compared to the population regression function, there are no unknowns in the

sample regression function: we have determinate values for all of its ingredients.

These ideas can be easily generalized to K predictors. Specifically, the

general form of the population regression model is
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Equation 4.7: Sample Regression Model

yi = β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂KxiK + ei

The sample regression function is

Equation 4.8: Sample Regression Function

ŷi = β̂0 +

K∑
k=1

β̂kxik

Finally, the residuals are defined as

Equation 4.9: Residuals

ei = yi − ŷi = yi − β̂0 −
K∑
k=1

β̂kxik,

where
∑

i ei = 0. All of these quantities are either measured or estimated, so

that there are no unknowns.

4.3.2 Matrix Notation

To formulate the sample regression model in matrix form, we define three new

vectors: (1) β̂
>

= (β̂0 β̂1 · · · β̂K) is a vector of estimated regression coefficients;

(2) e> = (e1 e2 · · · en) is a vector of residuals; and (3) ŷ> = (ŷ1 ŷ2 · · · ŷn) is a

vector of fitted (predicted) values. The sample regression model may then be

defined as

Equation 4.10: Sample Regression in Matrix Form

y = Xβ̂ + e

= ŷ + e
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As we shall see in the next chapter, β̂ = (X>X)−1X>y. Consequently, the

fitted values are given by

Equation 4.11: Fitted Values

ŷ = Xβ̂

= X
(
X>X

)−1
X>︸ ︷︷ ︸

H

y

= Hy

Here, H is a n × n symmetric matrix that is known as the hat matrix. This

matrix maps the observed onto the fitted values. It is an idempotent matrix

with the following shape

H =


h11 h12 · · · h1n

h21 h22 · · · h2n

...
...

. . .
...

hn1 hn2 · · · hnn


The sum of the diagonal elements of H—the so-called trace of the matrix—is

equal to K+1, i.e., the number of predictors plus the constant. The off-diagonal

elements are bounded between -.5 and .5.

As is shown in Appendix C.2, the residuals may also be expressed in terms

of the hat matrix. Specifically,

Equation 4.12: Residuals

e = (I−H)y = (I−H)ε

This vector is uncorrelated with the vector of fitted values.
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Figure 4.2: Geometric Representation of Predictors as Vectors

x1

x2

Panel (a): r = 0

x1

x2

Panel (b): r > 0

Note: The length of each vector is proportional to the standard deviation of each variable.
The correlation between the vectors is a function of their correlation. In the left panel, the
two predictors are uncorrelated. In the right panel, they are correlated positively.

4.4 Vector Geometry

The matrix representation of the multiple regression model allows us to depict

that model in a vector space. Any matrix can be represented in terms of vectors.

In regression analysis, it is useful to depict the predictors as vectors in a K-space,

where, in keeping with the notation so far, K denotes the number of predictors

in the model. Doing so adds some interesting insights about regression analysis.

We illustrate the vector geometry of multiple regression analysis by consid-

ering a model with two predictors. We simplify the model by assuming that all

variables have been centered about their sample means. This allows us to drop

the constant from the model. We now have the following sample regression

function

ŷ = β̂1x1 + β̂2x2

The absence of the intercept immediately reveals that everything is in mean

deviation form.

With this setup, we can depict the predictors in two dimensions, as is done

in Figure 4.2. Here, x1 and x2 each are depicted as a vector. The length of each

vector—the so-called vector norm—is equal to the square root of n − 1 times

the variance of the predictor. The vector angle is a function of the correlation

between the two vectors. Specifically, if α is the angle between the two vectors,

then cosα = r is the correlation. In the left panel of Figure 4.2, we see that the

vectors for the two predictors are orthogonal, which means that the correlation is
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Figure 4.3: Vector Representation of the Regression Plane

β̂1x1

β̂2x2

x1

x2
ŷ

Note: The black vectors represent the predictors. The red arrows represent the predictors
weighted by their partial slope coefficients. The blue vector of predicted values runs between
the corners of the parallelogram that can be created from the weighted predictors.

0. In the right panel, we see that the vectors are not orthogonal but at an acute

angle. This means that they are positively correlated. Note that Assumption 4.1

precludes the two predictors from being perfectly correlated. In vector geometric

terms, this means that the angle between x1 and x2 cannot be 0.

We would now like to represent the predicted values as a vector as well. Let

us take Panel (b) in Figure 4.2 as the starting point. We begin by multiplying

the vectors by their respective regression coefficients. Imagine that β̂1 = .5 and

β̂2 = 2. The weighted vectors are now represented by the red arrows in Figure

4.3. These can be used to create a parallelogram, which is the regression plane.

The vector between the lower left and upper right corner of the parallelogram

is the vector of predicted values. It is the resultant of the weighted predictor

vectors.

The vector of actual values of the dependent variable is the resultant of the

vectors of predicted values and residuals. As we show in Appendix C.2, these

are uncorrelated and thus orthogonal. Figure 4.4 shows how these vectors are

combined.

4.5 Interpretation

The elements β1 · · ·βK of the vector β are known as the partial slopes. They

can be interpreted using a ceteris paribus assumption. This means that we hold

everything else constant when we interpret the effect of a particular predictor

on the dependent variable; only the predictor of interest is allowed to change.
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Figure 4.4: Vector Representation of the Predicted Values and Residuals

ŷ

e y

Note: The vector y is the resultant of ŷ and e.

In terms of the marginal effect, the ceteris paribus assumption implies that

we take the partial derivative of the population regression function with respect

to the predictor of interest:

Equation 4.13: Marginal Effect

∂µ

∂xj
=
∂(β0 + β1x1 + · · ·+ βjxj + · · ·βKxK)

∂xj
= βj

In terms of discrete changes, we do the same. For example, if we increase Xj

by one unit, we leave all of the remaining predictors constant. Let µ1 and µ2

be the expected values of Y for Xj = xj and Xj = xj + 1, respectively. Then,

ceteris paribus,

µ2 = β0 + β1x1 + · · ·+ βj(xj + 1) + · · ·+ βKxK

µ1 = β0 + β1x1 + · · ·+ βjxj + · · ·+ βKxK

It is now easily verified that ∆µ = µ2−µ1 = βj . We say that for a unit increase

in Xj , the dependent variable is expected to change by βj units cetris paribus.

If instead we apply a change of δ units to Xj , then the discrete change is
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Equation 4.14: Discrete Change

Ceteris paribus,

∆µ|δxj = βjδ

Note that the ceteris paribus assumption means that we keep constant

predictors even if they are correlated with the predictor of interest. This is,

of course, somewhat artificial. After all, a change in one predictor may be

associated with simultaneous changes in other predictors; indeed, in the real

world, it almost always is. Without the simplifying device of ceteris paribus,

however, it would be quite difficult to interpret the effect of single predictors

and this is why we employ it.

As an illustration consider the regression of per capita FDI on per capita

GDP and political stability in Africa. In Table 4.1, we showed the data for four

countries. The full sample consists of 50 countries and is shown in Table 4.2.3

For this sample, we find

F̂DIi = −116.27 + 0.08 · GDPi + 1.91 · Stability

We can give the following interpretation to the coefficient for per capita GDP:

for each additional dollar of per capita GDP, per capita FDI is expected to

increase by 8 dollar cents, holding political stability constant. The effect of

political stability can be interpreted as follows: for an increase of one percentile

in political stability, per capita FDI is expected to increase by one dollar and 91

cents, holding per capita GDP constant.

4.6 Assessing the Importance of Predictors

One issue that frequently arises in multiple regression analysis is an assessment

of the (relative) importance of different predictors. How much does a particular

predictor “matter?” Which predictor matters the most? These are common

3The variable corruption will not be used in this analysis and will make its first appearance
in Chapter 5.



88 CHAPTER 4. THE MULTIPLE REGRESSION MODEL
T

ab
le

4.2:
F

D
I

in
A

frica
in

2012

C
o

u
n

try
F

D
I

G
D

P
S

tab
ility

C
orru

p
tio

n
C

o
u

n
try

F
D

I
G

D
P

S
tab

ility
C

orru
p

tio
n

A
lg

eria
7

2
.0

6
9

8
1

3
.9

2
1

0
.0

3
8

.3
M

ad
ag

ascar
3

6
.4

4
4

4
4

.9
5

2
7

.0
3

4
.4

B
en

in
2

8
.0

1
7

5
0

.5
1

5
7

.8
1

9
.1

M
alaw

i
8

.1
4

2
6

6
.5

9
4

5
.0

3
9

.7
B

o
tsw

an
a

7
3

.3
1

7
2

5
4

.5
6

8
8

.2
7

8
.9

M
ali

2
6

.7
9

6
9

6
.1

8
3

.8
2

5
.4

B
u

rkin
a

F
aso

2
0

.0
1

6
5

1
.6

5
2

6
.5

3
7

.3
M

au
ritan

ia
3

6
5

.1
3

1
0

4
2

.8
2

1
5

.6
3

2
.1

B
u

ru
n

d
i

0
.0

6
2

5
1

.0
1

5
.7

0
.1

M
au

ritiu
s

4
5

6
.1

9
8

8
6

1
.8

3
7

9
.1

6
7

.0
C

am
ero

o
n

2
4

.2
3

1
2

1
9

.9
3

2
7

.5
5

.7
M

oro
cco

8
7

.3
9

2
9

4
8

.9
6

3
2

.2
4

1
.1

C
ap

e
V

erd
e

1
4

9
.8

0
3

5
5

4
.4

1
7

2
.0

7
4

.2
M

o
zam

b
iq

u
e

2
2

3
.5

8
5

9
3

.2
9

5
8

.3
3

2
.5

C
A

R
1

5
.7

3
4

7
9

.4
7

5
.2

1
9

.6
N

am
ib

ia
4

8
6

.1
4

5
7

7
0

.3
1

7
8

.2
6

6
.0

C
h

ad
2

7
.5

4
1

0
3

5
.2

6
1

7
.1

6
.2

N
ig

er
4

8
.7

0
3

8
5

.3
4

1
4

.7
2

9
.2

C
o

m
oro

s
1

4
.4

6
7

6
7

.2
1

3
5

.1
2

6
.3

N
ig

eria
4

2
.0

6
2

7
4

2
.2

2
3

.3
1

1
.0

C
ô
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questions among practitioners of regression analysis. There are several ways

to answer them. Following Achen (1982), we distinguish between theoretical,

level, and dispersion importance.

4.6.1 Theoretical Importance

The theoretical importance of a predictor is simply its potential effect, i.e.,

the change in the outcome that is expected to result from a change in the

predictor (ceteris paribus). This can be ascertained via the marginal effect and

the discrete change defined in the previous section. In addition to reporting

these statistics, researchers are expected to provide a qualitative judgment as

to whether the effect is large or small. One way to do this with discrete changes

is to look at the maximum effect that would arise if the predictor is moved

across the full extent of the scale. In the FDI example, the maximum change on

political stability is 100 units. An increase of this size would produce a change

in the expected per capita FDI of 191 dollars. That covers around 7 percent of

the empirical range of per capita FDI, which would seem moderately important.

Note that maximum effects represent extreme changes in a predictor, which

may be unrealistic. This lack of realism is frequently criticized. To avoid this

criticism, you could try a different range of values for the predictor variable, e.g.

5th to 95th percentile or 1st to 3rd quartile.

The great advantage of assessing theoretical importance is that it can be

done based on information that is directly available from the estimation. A

major limitation, however, is that it is not possible to compare the coefficients

across predictors. The reason is that the estimates of the partial slopes are

driven in part by the scale of the predictors. In most applications, different

predictors are on different scales, so that this fact alone accounts for differences

in the slopes.4 To enable direct comparisons across regression coefficients, it

may be useful to consider using standardized regression coefficients.

4Indeed, one can change the slope coefficients by altering the measurement scale of the
predictors. With the FDI regression, for example, we could have measured GDP per capita not
in dollars but in hundreds of dollars. Now the slope coefficient associated with GDP is 8.14,
but this does not mean that GDP suddenly has undergone a 100-fold increase in its effect. It
simply means that a unit increase now corresponds to 100 dollars, which is 100 times larger
than a unit increase on the dollar scale.
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4.6.2 Level Importance

A second criterion for judging the importance of predictors is level importance.

Here, the focus is on the impact of a predictor on the level of the dependent

variable as measured by the mean. Thus, we care about central tendency. The

level importance of a predictor Xj is defined as

Equation 4.15: Level Importance

LIj = β̂j x̄j

(Achen, 1982). Level importance has the nice property that ȳ =ˆ̄0 +
∑

k β̂kx̄k =

β̂0 +
∑

k LIk.5 However, comparisons between the level importances of differ-

ent predictors are difficult to make when there are scale differences between

those predictors. This may be the reason why this criterion is used relatively

infrequently in the social sciences.

For the FDI regression, we have a mean GDP of 2972.40, resulting in

LIGDP = 0.08 · 2972.40 = 241.93. The mean of political stability is 33.50,

so that LIStability = 1.91 · 33.50 = 63.85. If we add the two level importances,

we obtain 301.78. Adding β̂0 = −116.27, we get 189.51, which is the mean

level of per capita FDI in the sample.

4.6.3 Dispersion Importance

A third way of judging the importance of a predictor is to consider dispersion

importance, which focuses on the dispersion rather than the mean of the de-

pendent variable. Here, the importance of a predictor is judged by the size of

its standardized regression coefficient:

Equation 4.16: Standardized Regression Coefficient

β̂sj = β̂j
sxj
sy

5This property follows from the OLS/ML estimator of the constant, which is β̂0 = ȳ −∑
k β̂kx̄k (see Chapter 5). Rearranging terms yields the expression for the mean of Y .
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This may be seen as a partial slope coefficient with the measurement units

of the dependent and predictor variables removed.6 This criterion focuses on

the question of what explains the variance in the dependent variable. The

standardized coefficient is the square root of the portion of the variance of the

dependent variable that is explained by the predictor. An advantage of this

approach is that standardized coefficients can be compared across predictors.

For the FDI regression example, we have sFDI = 467.23, sGDP = 4321.01,

and sStability = 23.13. Thus, β̂sGDP = 0.08 · (4321.01/467.23) = 0.75 and

β̂sStability = 1.91 · (23.13/467.23) = 0.09. In terms of dispersion importance,

GDP is a more powerful predictor than political stability.

Dispersion importance may seem like the natural choice as an importance

criterion, but it is not without limitations. First, hypothesis tests for standard-

ized coefficients are difficult to obtain due to their complex sampling distribu-

tions. Second, summing the standardized coefficients across all predictors does

not produce a measure of the total variance in the dependent variable, unless

the predictors are uncorrelated. Despite these limitations, the use of standard-

ized regression coefficients remains a common practice in certain fields such as

psychology.

4.6.4 Sequential Contributions to R2

To overcome the second problem with traditional dispersion importance metrics,

we can evaluate the sequential R2 contributions of predictors in a model. This

ensures that the sum of the individual contributions recovers the actual R2. This

sounds easier than it is. When the predictors are correlated, then the sequence

through which we add to the model matters a great deal.7 In the FDI regression,

for example, entering political stability as the first predictor yields a contribution

to the R2 of 0.11. When we add it as the second predictor, however, then the

contribution is only 0.01. Clearly, we should take sequence into account when

assessing the importance of political stability for FDI. With just two predictors

6It can be easily shown that β̂sj is the OLS/MM/ML estimator after we apply the z-
transformation to Y and to Xj ,i.e., after both variables have been standardized.

7The reason why this is so will become apparent in Chapter 9 when we discuss different
sums-of-squares.
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in the model, this is quite easy. When there are many predictors, however, the

number of distinctive sequences can become very large. We then need to rely

on the computer to perform this task for us.

The R package relaimpo will do the heavy lifting for us (Grömping, 2006).

It implements a variety of relative importance metrics, but we shall limit our-

selves to the so-called LMG metric (Lindeman, Merenda and Gold, 1980). Al-

though, the computational details are complex, this may be viewed as a an

average of the R2 contributions of a predictor, where we average across all

permutations for entering this predictor. The R syntax is

l i b r a r y ( r e l a i m p )

c a l c . r e l i m p ( o b j e c t , t y p e = ”lmg” )

Here object is the name of the object containing the regression results. When

we apply this command to the FDI regression, we see that the relative impor-

tance for political stability is 0.06 (the average of .11 and .01), whereas it is

0.056 for GDP. The total R2 is 0.62, so it is obvious that the LMG metric sums

to the coefficient of determination. Based on these results, there can be little

doubt that GDP is a more important predictor (in terms of dispersion impor-

tance) than political stability, although this in no way means that the latter

variable is unimportant for FDI.

4.7 Conclusion

In this chapter, we introduced the multiple regression model. We discussed how

multiple predictors can be accommodated within this model, howe their effects

can be interpreted, and how their importance may be assessed. We have not

yet discussed how to estimate the multiple regression model and how to test

hypotheses about it. This will be the topic of the next chapter.



Chapter 5

Statistical Inference in Multiple

Regression

In the previous chapter, we introduced the multiple regression model. We also

previewed the estimator of the partial slope coefficients. It is now time to

derive this estimator and also consider other aspects of statistical inference of

the multiple regression model. In parallel to Chapter 3, we begin by deriving

the OLS, MM, and ML estimators. We then discuss the properties of these

estimators. We conclude by discussing the topic of hypothesis testing.

5.1 Ordinary Least Squares

In Chapter 3, we introduced the least squares criterion and used it to estimate

the regression coefficients of the simple regression model. The same criterion

can be used to estimate the constant and partial slopes of the multiple regression

model. We start by doing this in scalar notation for a simple model. As we

shall see, this produces a complex equation. We then switch to matrix notation,

which results in a less complex expression that applies to any linear regression

model.

93
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5.1.1 Scalar Notation

Consider again the multiple regression model that we introduced at the start of

Chapter 4:

yi = β0 + β1xi + β2zi + εi

For this model, the least squares criterion is

S =
n∑
i=1

(yi − µi)2 =
n∑
i=1

(yi − β0 − β1xi − β2zi)
2 =

n∑
i=1

ε2
i

We seek to minimize this criterion with respect to β0, β1, and β2 simultaneously.

In operational terms, this means that we take the partial derivatives of S with

respect to these parameters and set them equal to zero:

∂S

∂β0
= −2

n∑
i=1

(yi − β0 − β1xi − β2zi)

∂S

∂β1
= −2

n∑
i=1

(yi − β0 − β1xi − β2zi)xi

∂S

∂β2
= −2

n∑
i=1

(yi − β0 − β1xi − β2zi)zi

Solving these equations for the three unknown parameters yields:

β̂0 = ȳ − β̂1x̄− β̂2z̄

β̂1 =
SXZ · SY Z − SXY · S2

Z

S2
XZ − S2

X · S2
Z

β̂2 =
SXZ · SXY − SY Z · S2

X

S2
XZ − S2

X · S2
Z

Here, SXY is n−1 times the covariance between X and Y , SXZ is n−1 times

the covariance between X and Z, SY Z is n − 1 times the covariance between

Y and Z, S2
X is n − 1 times the variance of X, and S2

Z is n − 1 times the

variance of Z. Thus, the OLS estimator not only takes into consideration the

relationships between both predictors and the dependent variable, but also the

relationship between the two predictors.
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Figure 5.1: OLS in a Regression with Two Predictors

X Z

Y

Note: Each circle represents a variable. The focus is on determining the effect of variable X.
This is captured by the gray area, which reflects the overlap between the unique part of X
and the part of Y that has not already been explained by Z.

The conceptual representation of this result can be found in Figure 5.1.

Here, the circles represent the variables in the regression model. More precisely,

each circle captures the variance in each variable. (That the circles are of

equal size is a mere coincidence.) Overlaps between the circles represent shared

variance, i.e., covariance.

We now wish to use this information about variances and covariances to

estimate the regression coefficients. Without loss of generality, imagine our

interest is in estimating β1—the effect of X on Y . For this estimate, we

consider only the information contained in the gray area. This area has two

important properties. First, it lies outside the intersection between Y and Z.

This means that we are only considering that part of the variance in Y that has

not already been explained by Z. Second, the area lies outside the intersection

between X and Z. As such, we only consider that part of X, which is not

redundant with Z. In this manner, the estimated effect of X on Y is assured

to capture the unique contribution of X.

We shall revisit the idea of capturing only the unique contribution of a pre-

dictor momentarily. But first it is time to generalize the idea of OLS estimation

to regression models of all sizes.
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5.1.2 Matrix Notation

The problem with generalizing the OLS estimator to models with potentially

many predictors is that even the expressions for models with two predictors are

already very complex. To simplify things, we return to matrix notation of the

linear regression model. Using the definition of the inner product, it can be

shown that the least squares criterion is identical to

S =

n∑
i=1

ε2
i = ε>ε,

where ε = y −Xβ, as we saw in the previous chapter. Expansion of S gives

S = y>y − 2β>X>y + β>X>Xβ

(see Appendix C.2).

We now proceed in the usual manner: we take the first partial derivatives,

set these to zero, and solve for the parameters. It can be shown that

∂S

∂β
= 2

(
X>Xβ −X>y

)
(see Appendix C.2). This is a (K + 1) × 1 vector of partial derivatives, which

we set equal to a vector 0 of equal length, which consists entirely of 0s:

2
(
X>Xβ −X>y

)
= 0

Multiplying both sides by 1/2 and rearranging terms, this produces the following

so-called normal equations:

X>Xβ = X>y

This is a system of equations that can be solved quite easily as long as the

inverse of X>X exists. In this case, premultiplication of both sides of the

normal equations by (X>X)−1 yields
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Equation 5.1: The OLS Estimator of β

β̂ =
(
X>X

)−1
X>y

(see Appendix C.2). It is possible to invert X>X as long as Assumption 4.1.2

is satisfied, i.e., there is no perfect multicollinearity or another problem that

causes X not to be full rank.

Equation 5.1 applies to any and all multiple regression models, regardless

of how many predictors they contain. It consists of two parts. The part that

is inverted, X>X, is a matrix of sums of squares and cross-products of the

predictors. This means that the diagonal elements capture the sums of the

squared predictors, whereas the off-diagonal elements capture the sums of the

products of predictors with each other. On the whole, one can say that X>X

captures information about the predictors and their relationships. The second

part, X>y, contains cross-products between the predictors and the dependent

variable. As such, this part captures information about the relationships between

the predictors and the dependent variable. Thus, we recognize the elements we

saw earlier in our derivation of the OLS estimator of a model with two predictors.

I hope you agree, however, that Equation 5.1 is much more elegant.

As an illustration of Equation 5.1 let us consider regression through the

origin with a single predictor: yi = β1xi + εi. In this model,

X =


x1

x2

...

xn


Notice that the column of ones has disappeared because there is no constant in

the model. It can be easily shown that X>X =
∑

i x
2
i and that (X>X)−1 =

1/
∑

i x
2
i . We also can show that X>y =

∑
i xiyi. Thus, the OLS estimator

of the slope is equal to

β̂1 =

∑
i xiyi∑
i x

2
i
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5.1.3 A Conceptual Look at OLS

So far, we have provided a mathematical discussion of OLS. But what exactly

happens during an OLS estimation? To answer this question, we take a more

conceptual look at OLS.

For the sake of simplicity, we revisit the model with two predictors: yi =

β0 +β1xi +β2zi + εi. Without loss of generality, we focus on the estimation of

β1. Our goal is to ascertain the effect of X on Y net of the effect of Z. As was

visualized in Figure 5.1, there are two kinds of relationships involving Z that we

want to purge from the estimate of β1: (1) the relationship between Z and Y

and (2) the relationship between Z and X. We accomplish this by proceeding

in the following manner:

1. Regress Y on Z and save the residuals U . We can think of these residuals

as the values of Y after the effect of Z has been removed.

2. Regress X on Z and save the residuals V . We can think of these resid-

uals as the values of X that remain after their overlap with Z has been

removed.

3. Regress U on V . The resulting slope coefficient is the estimate of β1.

Step 3 is key. Since the values u only contain the part of y that has not already

been explained by z, and since the values v only contain that part of x that

is not redundant with z, a regression of u onto v is no longer marred by the

presence of z. Thus, the resulting slope coefficient has to be the partial slope

coefficient associated with X. We could estimate β2 analogously, except that

the regressions in steps (1) and (2) are now on X.

Let us illustrate the workings of OLS by considering once more the data on

per capita FDI. To keep things simple, we consider only the data from Western

Africa, which are shown in Table 5.1. We wish to estimate the effect of political

stability on FDI. In a regression of FDI on GDP and stability, we find that the

estimated partial slope coefficient for stability is -0.01. We can recover this

estimate by first regressing on FDI on GDP; this yields

F̂DI = 44.20 + 0.02 ·GDP
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Table 5.1: Foreign Direct Investment in West Africa

Country FDI GDP Stability u v

Benin 28.01 750.51 57.8 -34.38 30.32
Burkina Faso 20.01 651.65 26.5 -40.00 -0.32
Cabo Verde 149.80 3554.41 72.0 19.43 25.78
Côte d’Ivoire 16.23 1365.87 11.4 -61.08 -20.19
Gambia 18.72 509.39 44.5 -37.84 18.64
Ghana 129.88 1645.52 50.2 45.78 16.74
Guinea 52.87 493.49 10.9 -3.30 -14.86
Guinea-Bissau 7.69 576.39 18.0 -50.49 -8.31
Liberia 154.30 413.76 31.8 100.07 6.57
Mali 26.79 696.18 3.8 -34.29 -23.31
Mauritania 365.13 1042.82 15.6 295.65 -13.83
Niger 48.70 385.34 14.7 -4.85 -10.34
Nigeria 42.06 2742.22 3.3 -68.63 -37.49
Senegal 21.73 1023.29 41.2 -47.28 11.90
Sierra Leone 24.10 590.32 37.4 -34.41 10.99
Togo 14.12 589.46 34.1 -44.38 7.70

Note: FDI and GDP are in constant dollars and per capita.
u is the residual from the regression of FDI on GDP. v is the
residual from the regression of stability on GDP.

The residuals from this regression are shown in the column titled u in Table 5.1.

Next, we regress stability on GDP, which yields

̂Stability = 22.46 + 0.01 ·GDP

The residuals from this regression are called v in Table 5.1. Finally we regress

u on v:

û = 0.00− 0.10 · v

In the last step we indeed recover the OLS estimator of the effect of political

stability. What we have accomplished here in three steps, Equation 5.1 does in

one step. And it does not do this for just one predictor, but for all predictors in

the model.
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5.2 Method of Moments Estimation

We can also estimate the multiple regression model using the method of mo-

ments. Key here is Assumption 4.3, which produces moment conditions of the

type

m(β) = E
[
X>ε

]
= E

[
X> (y −Xβ)

]
= E

[
X>y

]
− E

[
X>Xβ

]
= 0

The corresponding sample moment condition may be written as

m̄ =
1

n

∑
i

x>i yi −
1

n

∑
i

x>i xiβ = 0

Rearranging terms, we get (1/n)
∑

i x
>
i yi = (1/n)

∑
i x
>
i xβ. If we invert

(1/n)
∑

i x
>
i xi and pre-multiply both sides of the equation with this inverse,

then we become the method of moments estimator of β:1

β̂ =

(
1

n

∑
i

x>i xi

)−1(
1

n

∑
i

x>i yi

)

= n

(∑
i

x>i xi

)−1
1

n

(∑
i

x>i yi

)
,

which can be simplified to

Equation 5.2: MM Estimator of the Regression Coefficients

β̂ =

(∑
i

x>i xi

)−1∑
i

x>i yi

1This requires that assumption 4.1.2 holds.
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This is an alternative way of expressing Equation 5.1.

5.3 Maximum Likelihood Estimation

A third estimation method is maximum likelihood. Here, we start with the

assumption that the dependent variable is normally distributed with a mean of

µi and a variance of σ2. As we have seen before, it then follows,

f(yi) =
1√

2πσ2
exp

{
−1

2

(yi − µi)2

σ2

}
Define the parameters as consisting of β and σ2, then the likelihood function

for a single sample unit may be written as:2

`i = ln f(yi) = −.5 ln(2π)− .5 lnσ2 − 1

2

(yi − µi)2

σ2

Aggregating over the entire sample, this yields a log-likelihood of

` = −.5n ln(2π)− .5n lnσ2 − 1

2σ2

n∑
i=1

(yi − µi)2

We now recognize that
∑

i(yi − µi)2 =
∑

i ε
2
i = ε>ε = (y −Xβ)>(y −Xβ).

Consequently,

` = −.5n ln(2π)− .5n lnσ2 − 1

2σ2
(y −Xβ)>(y −Xβ)

We seek estimators β̂ and σ̂2 that optimize the log-likelihood. We find those

estimators by taking the partial derivatives of the log-likelihood and setting the

results to zero. Using the results from Appendix C.2, we have

∂`

∂β
= − 1

σ2

(
X>Xβ −X>y

)
= 0

∂`

∂σ2
= − 1

σ2

(
n

2
− 1

2σ2
(y −Xβ)>(y −Xβ)

)
= 0

2In estimating the simple regression model, we focused on σ instead of σ2. Both choices
are valid, but a focus on the variance is more common.
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These are the first-order conditions for the maximum likelihood estimators.

The first-order condition for the regression coefficients may be written as the

normal equations X>Xβ = X>y. As long as Assumption 4.1.2 holds true, then

X>X can be inverted and we can multiply both sides of the normal equations

by this inverse. This produces the estimator of Equation 5.1, which is thus also

the MLE.

With β̂ defined, the MLE for σ2 can be found by evaluating n
2 −

1
2σ2 (y −

Xβ̂)>(y −Xβ̂) = n
2 −

1
2σ2 e>e = 0. This results in the following estimator:

Equation 5.3: MLE of the Variance

σ̂2 =
e>e

n
=
SSE

n

This is the multiple regression analogue of the (biased) estimator that we derived

in Chapter 3 for the simple regression model.

5.4 Properties of the Estimators

5.4.1 Regression Coefficients

The finite sample properties of β̂ derive from the Gauss-Markov Theorem, which

we already discussed in Chapter 3. Specifically, under Assumptions 4.2-4.3, it

can be shown that β̂ is BLUE, i.e., the best linear unbiased estimator. A proof

of this result is offered in Appendix C.2.

Because β̂ is also the MLE, several asymptotic properties follow. Specifically,

assuming that Assumptions 4.2-4.3 hold true and other regularity conditions

have been satisfied, β̂ can be shown to be consistent, asymptotically efficient,

and asymptotically normally distributed.
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5.4.2 Error Variance

The estimator in Equation 5.3 is asymptotically unbiased. In small samples,

however, it displays a negative bias. Specifically,

E[σ̂2] =
n−K − 1

n
σ2

(see Appendix C.2). Asymptotically, (n − K − 1)/n → 1 and E[σ̂2] = σ2.

In small samples, (n − K − 1)/n < 1 and E[σ̂2] < σ2; the error variance is

systematically underestimated.

To overcome the finite sample bias in the estimator of the error variance,

we apply the following correction.

Equation 5.4: Unbiased Estimator of the Variance

s2 =
e>e

n−K − 1

This estimator corrects for the degrees of freedom lost in estimating the regres-

sion coefficients.

5.5 Standard Errors and Confidence Intervals

5.5.1 Regression Coefficients

When Assumption 4.2 holds true, and the errors are homoskedastic and not

correlated, then it can be shown that the variance-covariance matrix of the

estimators (VCE) is

Equation 5.5: VCE of β̂

V[β̂] = σ2
(
X>X

)−1

(see Appendix C.2 for a proof). This is a (K+ 1)× (K+ 1) matrix of variances

and covariances between the estimators of the regression coefficients. Specifi-
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cally,

V[β̂] =


V ar(β̂0) Cov(β̂0, β̂1) · · · Cov(β̂0, β̂K)

Cov(β̂1, β̂0) V ar(β̂1) · · · Cov(β̂1, β̂K)
...

...
. . .

...

Cov(β̂K , β̂0) Cov(β̂K , β̂1) · · · V ar(β̂K)


The diagonal elements are the squared standard errors of the OLS estimators

of the regression coefficients. These can be used to test hypotheses about indi-

vidual coefficients, as we shall see in Section 5.6. The off-diagonal elements are

the covariances between the OLS estimators for different regression coefficients.

In general, these elements will be zero only if we, as researchers, have full con-

trol over the values of the predictors, as in an experiment. In that situation,

we can ensure that the predictors are uncorrelated and through this action, the

regression coefficients also will be uncorrelated. When the predictors are not

manipulated but simply observed, then they generally will be correlated to some

degree. This, in turn, will cause the regression coefficients to be correlated and

the off-diagonal elements of the VCE to be non-zero.

The off-diagonal elements serve an important diagnostic function, as we

shall see in Chapter 10. Specifically, if the estimators of different coefficients

are strongly correlated, then this suggests that it may be difficult to establish

the partial effects of the associated predictors. Moreover, a high correlation

between regression estimates has implications for hypothesis testing, as we shall

see later in this chapter.

A problem with Equation 5.5 is that σ2 is generally unknown. An unbiased

estimator of the estimated VCE is given by

V̂[β̂] = s2
(
X>X

)−1

The diagonal elements of this matrix are the squared estimated standard errors

of the regression coefficients.

As an illustration let us consider the regression model for the data in Table
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4.2. As a reminder, the model is given by

FDIi = β0 + β1GDPi + β2Polstabi + εi

where Polstab is political stability. For this model, the VCE is given by

V̂[β̂] =

 5549.3188

−0.1078 0.0001

−104.3894 −0.0061 3.6548


where we have chosen to depict only the lower diagonal since the matrix is

symmetric. The interpretation of the various elements is as follows:

• V̂ ar[β̂0] = 5549.3188, which means that ŜE[β̂0] =
√

5549.3188 =

74.4938.

• V̂ ar[β̂1] = 0.0001, which means that ŜE[β̂1] =
√

0.0001 = 0.0102.

• V̂ ar[β̂2] = 3.6548, which means that ŜE[β̂2] =
√

3.6548 = 1.9118.

• Ĉov[β̂0, β̂1] = −0.1078, which means that Ĉor[β̂0, β̂1] = −0.1078/(74.4938·
0.0102) = −0.1414.

• Ĉov[β̂0, β̂2] = −104.3894, which means that Ĉor[β̂0, β̂2] = −104.3894/(74.4938·
1.9118) = −0.7330.

• Ĉov[β̂1, β̂2] = −0.0061, which means that Ĉor[β̂1, ˆ|beta2] = −0.0061/(0.0102·
1.9118) = −0.3105.

The standard errors for the constant and the partial slope for political stability

are quite sizable. The partial slope for stability also shows a sizable correlation

with the constant. On the other hand, the correlation between the two partial

slopes seems rather modest. This suggests no great difficulties in separating

out the effects if these two predictors.

With the help of the standard errors, we can compute confidence inter-

vals for the regression coefficients. Analogous to Equation 3.21, we define the
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confidence interval at level 1− α as

β̂k − tn−K−1,α
2
ŜE[β̂k] ≤ βk ≤ β̂k + tn−K−1,α

2
ŜE[β̂k]

The only change relative to Equation 3.16 is in the degrees of freedom, n−K−1

instead of n− 2.

As an example, let us focus on the data in Table 4.2 and compute the

confidence interval for the regression coefficient associated with per capita GDP.

We have seen that the regression coefficient for this predictor is β̂1 = 0.08,

whereas its estimated standard error is ŜE[β̂1] = 0.01. Let us compute the 90%

confidence interval, so that α = 0.10. With n = 50, we find that tn−K−1,α/2 =

t47,05 = −1.68. Thus,

0.08− 1.68 · 0.01 ≤ β1 ≤ 0.08 + 1.68 · 0.01,

which produces a confidence interval that runs from 0.06 to 0.10.

5.5.2 Predicted Values

We have seen that we can obtain predicted values of Y through y = Xβ̂ in

matrix notation, or ŷi = β̂0 + β̂1xi1 + · · ·+ β̂KxiK in scalar notation. Since the

predicted values are a function of the estimators, they are subject to sampling

fluctuation. We can compute the sampling variance in the predicted values

using Equation 5.5:

Equation 5.6: Variance of the Predicted Values

V [ŷi] =
∑
k

(xik − x̄k)2V ar[β̂k] +

2
∑
j<k

(xij − x̄j)(xik − x̄k)Cov(β̂j , β̂k) +

σ2

n
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(see Appendix C.2 for a derivation). This can be estimated by substituting s2

for σ2, as well as the elements of the estimated VCE.

Having defined the sampling variance, we can now also define a confidence

interval for the predicted values, analogous to Equation 3.18. Specifically, at

level 1− α, the confidence interval for the predicted values is:

ŷi − tn−K−1,α
2

√
V̂ [ŷi] ≤ E[yi] ≤ ŷi + tn−K−1,α

2

√
V̂ [ŷi]

The change relative to Equation 3.18 is in the degrees of freedom, which have

been adjusted to accommodate more than a single predictor.

We illustrate this using the data in Table 4.2 once more. Imagine, we would

like to predict the per capita FDI when per capita GDP is $1,000 and political

stability is 50, i.e., 50 percent of the countries in the world are more stable than

our hypothetical case. The regression model yields

F̂DIi = −116.27 + 0.08GDPi + 1.91Polstabi

At the hypothesized values of the predictors, we expect per capita FDI to be $

60.41. The sampling variance can be computed as follows:

V̂ [ŷi] = (1000− 2936.25)2 · 0.0001 + (50− 32.88)2 · 3.6548 +

2(1000− 2936.25) · (50− 32.88) · −0.0061 +
4069328

50
= 82244.59

To compute the 95% confidence interval, we set tn−K−1,α/2 = t13,0.025 =

−2.01. This produces a confidence interval of

60.41− 2.01 ·
√

82244.59 ≤ E[yi] ≤ 60.41 + 2.01 ·
√

82244.59,

which runs from -516.52 to 637.34. Given the length of the confidence interval,

our prediction is quite imprecise.
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5.6 Analysis of Variance

In Chapter 1, we encountered the concepts of SSE and SST . These concepts

also play an important role in multiple regression analysis. They are part of the

analysis of variance (ANOVA) of the regression model, which is crucial for

hypothesis testing, as we shall see in the next section. As we already saw in

Chapter 1, the ANOVA elements of SSE and SST also define the coefficient

of determination, a topic we shall revisit in Chapter 6. Hence, it is useful to

dwell a little on the ANOVA and to contemplate the relationship between SST

and SSE.

In scalar notation, SST =
∑

i(yi − ȳ)2.3 We know that yi = ŷi + ei, so

that we can also write SST =
∑

i [(ŷi + ei)− ȳ]2. The following result can

then be demonstrated (see Appendix C.2):

Equation 5.7: ANOVA

n∑
i=1

(yi − ȳ)2

︸ ︷︷ ︸
SST

=
n∑
i=1

(ŷi − ȳ)2

︸ ︷︷ ︸
SSR

+
n∑
i=1

e2
i︸ ︷︷ ︸

SSE

This decomposition of the variation in the dependent variable is the ANOVA.

We see that the total variation or SST can be broken down into two parts. The

first part is the sum of squares regression (SSR), which captures the portion of

the variance due to the regression. The second part is the SSE, which captures

the portion of the variance due to the errors. We can say that the total sample

variation in the dependent variable breaks down into two pieces: (1) a piece,

SSR, that is explained by the model and (2) a piece, SSE, that is unexplained

by the model. Thus, total variation equals explained variation plus unexplained

variation.

It is useful to dwell a bit longer on the meaning of the SSR. This term

compares two types of predictions of the dependent variable. One type of

prediction is ŷi, which is the prediction of the dependent variable that we obtain

3Appendix C derives the results in matrix form.
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by considering information about the predictors. The second type of prediction is

ȳ, which is the best prediction of the dependent variable if we ignore information

about the predictors. That is to say, if I do not know anything about a sampling

unit, then predicting that a particular unit is at the mean is the best guess I

can make in the sense of minimizing the squared prediction errors. The SSR

deviates from zero to the extent that the two types of predictions differ. If

SSR = 0, this means that knowledge about the predictors produces exactly the

same predictions as ignoring that knowledge. In this case, we would say that

the regression contributes nothing to explaining the variation in Y .

Consider again the data from Table 4.2. For these data, SST = 10, 696, 984

and SSE = 4, 069, 328. This leaves SSR = 6, 627, 656. We see that most of

the observed variation in per capita GDP is explained variation. Not all of it is

explained, however, since SSE 6= 0. In Chapter 6, we shall see how the SSR

can be parlayed into a measure of explained variation.

5.7 Hypothesis Testing

In a multiple regression model of the variety yi = β0 + β1xi1 + · · ·+ βKxiK +

εi, we can perform two kinds of hypothesis test. The first kind is similar to

what we discussed in Chapter 3: we can test a hypothesis about the partial

slope coefficient that is associated with a particular predictor. Since only a

single parameter is involved, we refer to this as a test of a simple hypothesis.

The second kind of hypothesis we can test considers a number of partial slope

coefficients simultaneously. We call this a test of a joint hypothesis. In the

most extreme case, this hypothesis pertains to the totality of slope coefficients.

We need different procedures for each of the hypothesis types.

5.7.1 Testing Simple Hypotheses

Consider the predictor Xk. For this predictor, we can test the null hypothesis

that the associated regression coefficient is equal to some value q:

H0 : βk = q
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To test this hypothesis, we can use the same approach that we used in simple

regression analysis (see Equation 3.23). That is, we compute the test statistic

β̂k − q
ŜE[β̂k]

∼ tn−K−1

By referencing the t-distribution, we can compute a p-value, which can then be

used to decided the fate of the null hypothesis. Typically, we set q = 0 so that

the null hypothesis states that the predictor has no effect in the population.

As an example, consider the regression of per capita FDI onto per capita

GDP and political stability (see Table 4.2). We seek to test the null hypothesis

that political stability has no effect on per capita GDP in the population: β2 = 0.

We have seen that β̂2 = 1.91 and that the standard error is 1.91. The test

statistic is 0.997. When referred to a t-distribution with 47 degrees of freedom,

we obtain p = 0.324. This is much greater than any conventional significance

level, so that we fail to reject the null hypothesis. We conclude that political

stability is not a significant predictor of FDI.

5.7.2 Testing Joint Hypotheses: Introducing the F-Test

Often, we want to test multiple predictors. In this context, a somewhat radical

hypothesis would be that all of the predictors exert a null effect in the linear

model. Here the null hypothesis is

H0 : β1 = β2 = · · · = βk = 0

This amounts to saying that the model, E[yi] = β0 + β1xi1 + · · · + βKxiK is

reducible to E[yi] = β0, without this resulting in a worse fit to the data. The

alternative hypothesis is that at least one of the βs is non-zero in the population.

At first sight, it would seem that the joint hypothesis β1 = β2 = · · · =

βK = 0 can be tested quite easily: just perform K simple hypothesis tests and

say that the null hypothesis fails to be rejected when none of the tests come out

as statistically significant. This approach is highly problematic, however, not

least because the null hypothesis may be false even when none of the individual
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coefficients are statistically significant. This happens, for example, when the

predictors are highly correlated (see Appendix C.2).

We need to take a different approach to testing the joint hypothesis and this

takes the form of the F -test. The intuition behind this test is straightforward

and is based on the ANOVA shown earlier. Imagine that the null hypothesis is

true. Then it can be shown that the SSR and the SSE, both divided by their

degrees of freedom, are unbiased estimators of σ2—in expectation, they yield

the same result (see Appendix C.2). In Chapter 3, we already saw that SSE

divided by its degrees of freedom is known as the MSE. Analogously, SSR

divided by its degrees of freedom is called MSR. If the null hypothesis is false,

then MSR is greater than MSE in expectation (see Appendix C.2).

In light of these considerations, it would make sense to use the ratio of MSR

and MSE as a test statistic. Under the null hypothesis that the predictors have

no effect in the linear model, this ratio should be approximately 1. Values greater

than 1, would suggest that the null hypothesis is false.

To compute a p-value, we need to find the sampling distribution of the

statistic MSR/MSE. For a normally and independently distributed (n.i.d.)

dependent variable, it can be shown that

Equation 5.8: The F -Test Statistic

MSR

MSE
∼ F [K,n−K − 1]

(see Appendix C.2). Hence, the ratio MSR/MSE is called the F-test statistic.

For the data from Table 4.2, we established earlier that SSE = 4, 069, 328

and SSR = 6, 627, 656. With a sample size of n = 50 and two predictors, this

means that MSE = 4, 069, 328/47 = 86, 581.45 and MSR = 6, 627, 656/2 =

3, 313, 828. Hence, F = 3, 313, 828/86, 581.45 = 38.27. This obviously much

larger than 1. When we refer this test statistic to the F [2, 47]-distribution, we

obtain p = 0.000. Thus, we conclude that we reject the null hypothesis that

both per capita GDP and political stability have null effects in the population

regression function.

At this point, it is useful to point to one common misunderstanding about
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the F -test. Sometimes, a small value of F is interpreted as proof that the

predictors have no effect on the dependent variable. However, this inference

goes well beyond the information contained in the F-test. All it can tell us that

the predictors have no effect given the functional form of the model that we

have estimated. With a different specification, however, it may well be that the

F-test becomes significant. For example, it is possible that a set of variables is

highly important but that this becomes visible only when we interact them with

other variables. Thus, the F-test should always be understood in terms of the

model specification; to draw broader inferences about predictors is dangerous.

5.7.3 Testing Subsets of Predictors: Expanding the F-Test

In the previous section, we saw how the F-test can be used to test a hypothesis

about the entire set of predictors. We can also use it to test a subset of the

predictors, however. To determine our thoughts, imagine that we estimate the

following FDI model:

FDIi = β0 + β1GDPi + β2Stabilityi + β3Corruptioni + εi

An economist argues that we do not need the two political variables. She

believes that a model without them will fit the data just as well as one with.

The corresponding null hypothesis is H0 : β2 = β3 = 0. This hypothesis

pertains to a subset of the partial regression coefficients. How would we test

it?

Two-Step Approach There are two approaches we can take, both resulting in

asymptotically equivalent F-test statistics. Conceptually, the easiest approach

is to estimate two models: (1) the model as specified and (2) a model that

omits the political variables. Call these models M1 and M2, respectively. We

assume—this is important—that the sample size remains constant across the

two models. For each, we can record their SSR. If the economist is correct, then

SSR2 ≈ SSR1. However, if the two political predictor variables significantly

contribute to the model fit, then SSR1 > SSR2. Thus, we compare the two

SSRs as the basis for the hypothesis test.
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In the general case, we have a set of predictors that can be partitioned into

two subsets: X1, which includes the constant, and X2. We write the regression

model as:

y = X1β1 + X2β2 + ε

We formulate the null hypothesis H0 : β2 = 0. We first estimate the full model,

including X2, and record SSR1. If X1 and X2 contain K and M predictors,

respectively, then the degrees of freedom associated with the full model are

K +M . In a next step, we estimate

y = X1β1 + ε,

which is what remains after substituting β2 = 0 into the full model. We now

again record SSR, which now has K associated degrees of freedom. The test

statistic is now defined as

Equation 5.9: Testing a Subset of Predictors

(SSR1 − SSR2)/M

SSE1/(n−K −M − 1)
∼ F [M,n−K −M − 1]

Here SSE1 is the error sum of squares associated with the full model.

In our example, X1 consists of the constant and GDP, whereas X2 contains

political stability and corruption. When we estimate this model for the 2012

African FDI data, we obtain SSE1 = 3, 708, 867 and SSR1 = 6, 988, 118.

Under the null hypothesis, we can drop political stability and corruption from the

model. When we estimate this reduced model, we obtain SSR2 = 6, 541, 616.

The test statistic is now

(6, 988, 118− 6, 541, 616)/2

3, 708, 867/46
= 2.77

When referred to a F [2, 46] distribution, we obtain p = 0.073. Our decision

about the null hypothesis now depends on the Type-I error rate. At α = 0.05,

we fail to reject the null hypothesis and would be inclined to agree with the
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economist. At α = 0.10, we would reject the null hypothesis and be inclined to

argue that the political variables matter. Given the small sample size, I would

be inclined to select α = 0.10 in order to maximize statistical power. More

conservative statistical minds, however, would probably balk at that choice and

insist on using α = 0.05.

Single Step Approach In order to test a hypothesis about β2, it actually

suffices to estimate the full model. In what is known as the Wald test, we can

compare the estimate of β2 to the hypothesized values and decide the faith of

the null hypothesis in this way.

To understand this approach, we begin by formulating the concept of a

linear constraint. A linear constraint is a linear function involving one or more

parameters of the regression model. For instance, the hypothesis β2 = 0 is a

linear constraint because it equates a single parameter (β2) to a particular value

(0). In our earlier example, we had β2 = β3 = 0. This actually corresponds to

two linear constraints, one for β2 and one for β3.

Any set of linear constraints can be formulated as a systems of equations:

Equation 5.10: Linear Constraints

Rβ = r

Here β is the familiar vector of partial regression coefficients, r is a Q×1 vector

of values, and R is a Q × (K + 1) matrix that defines which parameters in β

will be constrained and how. The total number of constraints is given by Q. In

our example, β> = (β0 β1 β2 β3). If we define r> = (0 0) and

R =

(
0 0 1 0

0 0 0 1

)
,

then Rβ = r selects the parameters β2 and β3 and sets both equal to 0.

Wald’s insight was to compute Rβ̂ and to compare this to r. If the con-

straints are valid, then the estimates should be close to the hypothesized values,

so that Rβ̂ ≈ r or Rβ̂− r ≈ 0. On the other hand, if the constraints are false,



5.7. HYPOTHESIS TESTING 115

then Rβ̂ − r would deviate from 0, possibly considerably so.

To turn this idea into a test, we need to add two further considerations.

First, the sign of Rβ̂ − r does not matter for the faith of the constraint. Only

the magnitude matters. To get rid of signs, we can square the discrepancies

between the estimates and the hypothesized values. Second, we need to take

into account sampling fluctuation. The discrepancies Rβ̂ − r are based on

point estimates, but these fluctuate from sample to sample. To take this into

account, it becomes necessary to incorporate sampling fluctuation into the test

statistic. The net result of these considerations is that the test statistic may be

formulated as

Equation 5.11: Testing a Subset of Predictors Redux

(Rβ̂ − r)>
[
s2R

(
X>X

)−1
R>
]−1

(Rβ̂ − r)

Q
∼ F [Q,n−K − 1]

Here s2(X>X)−1 is the estimated VCE. The pre-multiplication by R and post-

multiplication by R> ensures that the appropriate elements—those pertaining

to the parameters that are being constrained—are selected. The fact that the

term Rβ̂ − r appears twice is the matrix equivalent of squaring the values.

Let us apply this approach to the FDI example from before. It turns out

that β̂ = (−56.92 0.08 5.70 − 5.56). Hence,

Rβ̂ − r =

(
0 0 1 0

0 0 0 1

)
−56.92

0.08

5.70

−5.56

−
(

0

0

)

=

(
5.70

−5.56

)
−

(
0

0

)

=

(
5.70

−5.56

)
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The estimated VCE for the full regression model is given by

s2
(
X>X

)−1
=


5955.644 −0.140 −46.889 −73.814

−0.140 0.000 −0.008 0.004

−46.889 −0.008 6.617 −4.714

−73.814 0.004 −4.714 6.915


Pre-multiplication by R and post-multiplication by R> yields

s2R
(
X>X

)−1
R> =

(
6.617 −4.714

−4.714 6.915

)

This is the part of the estimated VCE that corresponds to β̂2 and β̂3, the two

parameters that are being constrained. The numerator of the test statistic is

now

(
5.70 −5.56

)( 6.617 −4.714

−4.714 6.915

)−1(
5.70

−5.56

)
= 5.54

Dividing this by Q = 2 yields a test statistic of 2.77, which is the same as we

derived earlier in the two-step approach. The p-value is again 0.073, so that

the faith of the null hypothesis depends once more on the choice of the Type-I

error rate.

The computations involved in the one-step approach may seem quite diffi-

cult. Fortunately, most statistical programs have automated procedures for this

approach. The same is often true for the simpler two-step procedure. We shall

discuss the relevant R routines in section 5.9.

5.8 The Conditional Expectation Function

So far, we have said a great deal about inference for the predictors. But what

about the conditional expectation function, which brings together all of those

predictors? What inferences can we draw about it?

Our estimator of the conditional expectation function is ŷi = β̂0+
∑

k β̂kxik.
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Provided that Assumption 4.3 holds, this is an unbiased estimator: E[ŷi] =

β0 +
∑

k βkxik = E[yi]. Its variance is given by

Equation 5.12: Variance of the Fitted Values

Var(ŷi) =
∑
k

(xik − x̄k)2Var(β̂k) +

2
∑
j<k

(xij − x̄j)(xik − x̄k)Cov(β̂j , β̂k) +

σ2

n

(see Appendix C.2). We see that this variance reduces to σ2/n when all of the

predictors are set to their sample means. Because σ2 is unknown, we substitute

the unbiased estimator s2. This results in the estimated sampling variance of

the fitted values.

The confidence interval can now be obtained analogous to Equation 3.22:

Equation 5.13: Confidence Interval Around the Regression Line

ŷi − tn−K−1,α
2
ŜE[ŷi] ≤ E[yi] ≤ ŷi + tn−K−1,α

2
ŜE[ŷi]

This differs from the earlier result only in the adjustment of the degrees of

freedom.

As an example, let us return to the data in Table 4.2. Imagine, we want

to predict the per capita FDI when the per capita GDP is 2000 US Dollars and

political stability is at 50. With n = 50, the sample mean of per capita GDP is

2972.40, while that of political stability is 33.50. The regression coefficients are

β̂0 = −116.27, β̂GDP = 0.08, and β̂Stable = 1.91. Hence, ŷ = −116.27 + 0.08 ·
2000+1.91·50 = 141.80. The estimated variance of this prediction requires that

we obtain the variances and covariances of the estimates: Var(β̂GDP ) = 0.0001,

Var(β̂Stable) = 3.6548, and Cov(β̂GDP , β̂Stable) = −0.0061. Further, we know
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that s2 = 86, 581. Consequently,

V̂ar(ŷ) = (2000− 2972.40)2 · 0.0001 + (50− 33.50)2 · 3.6548 +

2 · (2000− 2972.40) · (50− 33.50) · −0.0061 +
86581

50
= 3020.34

To obtain the 95% confidence interval, the critical values of the t-distribution

with 47 degrees of freedom are ±2.012. The confidence interval for E[y] is thus

141.80− 2.012 ·
√

3020.34 ≤ E[y] ≤ 141.80 + 2.012 ·
√

3020.34

This is is approximately equal to 31.24 ≤ E[y] ≤ 252.36.

5.9 Multiple Regression in R

In this chapter, we have gone through a number of sometimes intricate proce-

dures for drawing inferences about the multiple regression model. Fortunately,

many of these procedures are automated in R. In this section, we discuss how R

can be used to perform estimations and hypothesis tests. We show this in the

context of the data in Table 4.2. Specifically, we shall estimate the following

model:

FDIi = β0 + β1GDPi + β2Stablei + β3Corrupti + εi

We assume that the data are contained in the data frame africa, which con-

tains the variables fdipc (FDI), gdppc (GDP), polstab (Stable), and corrupt

(Corrupt).

5.9.1 Model Estimation

To estimate the model, we issue the following syntax:

f d i . f i t <− lm ( f d i p c ˜ gdppc + p o l s t a b + c o r r u p t ,

data = a f r i c a )
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Figure 5.2: R Output for a Multiple Regression Model

Note: The part in the red box gives the F-test for H0 : β1 = β2 = β3 = 0.

Here, we have stored the estimation results into the object fdi.fit. We see

that the syntax for the multiple regression model is quite intuitive: we place the

dependent variable before the tilde symbol and the predictors after, connecting

the latter with plus signs. As is always the case in R, the estimation results

do not automatically appear on the screen; to view them, we need to issue the

command summary(fdi.fit). This produces the results in Figure 5.2.

Most of this figure was already discussed in the context of Figure 3.4. The

part that we did not discuss before is the F-test, which is shown in the red box.

By default, R shows the test statistic, degrees of freedom, and p-value for the

null hypothesis that all of the predictors have null effects in the population. In

our case, this means that we test H0 : β1 = β2 = β3 = 0. For this hypothesis,

we obtain F = 28.89. The degrees of freedom associated with the test statistic

are K = 3 and n − K − 1 = 46, respectively. When referred to a F [3, 46]

distribution, we obtain p = 0.000. For any conventional Type-I error rate, the

null hypothesis is rejected.
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Figure 5.3: ANOVA Table

Note: (A) degrees of freedom; (B) sums of squares; (C) mean squares. In addition, F-test
statistics and p-values are shown for the individual predictors.

5.9.2 ANOVA

Once we have estimated the linear model, it is also easy to obtain the ANOVA.

This can be done using the anova command:

anova ( f d i . f i t )

This produces the results shown in Figure 5.3. The output shown here deviates a

bit from our discussion of ANOVA. R does not report a single sum of squares for

the predictors but shows individual sums of squares for each predictor. We can

derive the SSR as we defined it simply by adding the individual components.

Looking at the Figure in greater detail, panel (A) shows the degrees of

freedom associated with the different sums of squares. For each of the predictors

we have one degree of freedom, so that the total degrees of freedom associated

with the predictors is 3. For the residuals, we have 46 degrees of freedom.

Adding all of the degrees of freedom together, we get 49; this is equal to n− 1.

Panel (B) shows the sums of squares. For the residuals, we get 3, 708, 867; this

is SSE. If we add the sums of squares of the individual predictors, then we

obtain SSR. Thus, SSR = 6, 541, 616 + 86, 040 + 360, 462 = 6, 988, 118. In

panel (C), the sums of squares are divided by their degrees of freedoms in order

to obtain mean squares. For the residuals, this produces 80,628; this is MSE

or s2. To obtain the MSR, we can add the individual mean squares of the
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predictors and then divide the result by 3. This yields MSR = 2, 329, 373. The

division of MSR by MSE yields the F-statistic that is reported as part of the

regression output.

Notice that the R ANOVA table also shows F-tests for the individual pre-

dictors. In general, I recommend against relying on these in lieu of the t-tests

shown in the regression output. The problem with the F-statistics shown here

is that they depend on the order in which the predictors are specified in the

lm command: GDP before political stability, before corruption. With another

order, the F-statistics would have come out differently (also see the discussions

in Chapter 4.6.4 and Chapter 8).

5.9.3 F-Tests for Subsets of Predictors

Imagine that we are interested in testing the null hypothesis β2 = β3 = 0.

As we have seen, this hypothesis can be tested using either a two- or one-step

approach. Both approaches are available in R, although they require that add-on

libraries are installed first.

Two-Step Approach To implement the two-step approach, we need the li-

brary lmtest. We also need to estimate the model that omits political stability

and corruption control. Finally, we need to implement the F-test. All of this

can be accomplished using the following syntax:

l i b r a r y ( l m t e s t )

r e d u c e d . f i t <− lm ( f d i p c ˜ gdppc , data = a f r i c a )

w a l d t e s t ( f d i . f i t , r e d u c e d . f i t )

In the first line, the library lmtest is loaded. In the second line, we estimate

the model under the null hypothesis. Again, it is essential that the sample size

remains the same as in the full model. The third line implements the F-test.

It takes two arguments: the full model, which we stored in fdi.fit, and the

model under the null hypothesis, which we stored into reduced.fit. The test

results are shown in Figure 5.4.
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Figure 5.4: F-Test on a Subset of Predictors Using a Two-Step Approach

Note: Obtained using waldtest in the lmtest library.

The output in Figure 5.4 repeats the two model specifications. It also shows

the degrees of freedom associated with SSE, namely 46 for the complete and

48 for the reduced model. The key information is contained in the last three

columns. The column labeled “Df” subtracts the degrees of freedom: 46 - 48 =

-2. The absolute value of this number corresponds to the number of restrictions,

Q. The column labeled “F” shows the F-statistic for the null hypothesis, in this

case 2.7689. Finally, the column labeled “Pr(>F)” gives the p-value, which is

the same as we computed by hand earlier.

One-Step Approach For the one-step approach, we need the library aod and

its associated wald.test function.4 The syntax for this command is more com-

plicated, but still a lot less involved than the computations implied by Equation

5.11.

l i b r a r y ( aod )

wald . t e s t ( vcov ( f d i . f i t ) , coef ( f d i . f i t ) , Terms = 3 : 4 ,

df=df . r e s i d u a l ( f d i . f i t ) )

The command requires only the estimation results from the full model. It has

four ingredients. First, it requires the VCE, which we provide here by writing

vcov(fdi.fit). Next, it needs the parameter estimates (coef(fdi.fit)).

4Notice the presence of the period between wald and test. This is a distinguishing charac-
teristic from the waldtest function that we just described.
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Figure 5.5: F-Test on a Subset of Predictors Using a One-Step Approach

Note: Obtained using wald.test in the aod library. The key results are indicated in the red
box.

Third, it needs to know which parameters are being restricted under the null

hypothesis, so that it can set up the matrix R. This is done through the Terms

option. R indexes the parameters as follows: 1 = β0, 2 = β1, 3 = β2, and

4 = β3. We want to restrict β2 and β3, which involve the third and fourth

index. Hence, we set Terms = 3:4 (the colon may be read as “through”). The

final ingredient is the degrees of freedom, so that R can compute Q. These are

obtained by issuing df = df.residual(fdi.fit).

The results are shown in the red box in Figure 5.5. We again obtain an

F-statistic of roughly 2.8. When referred to a F distribution with 2 and 46

degrees of freedom, we obtain p = 0.073. This is identical to what the two-step

approach showed.

5.10 Reporting Multiple Regression Results

We have gone through a large number of statistical results about the multiple

regression model that one could possibly be report. But what is the absolute

minimum that should be reported? There is no universal standard for regression

tables in political science. Most journals, however, require something akin to

Table 5.2.5

The table has several important features. First, it clearly indicates the

5This table was generated using the stargazer package in R. This makes it possible to
directly turn an estimation object such as [fdi.fit] into a table in ASCII, HTML, or Latex
format.
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Table 5.2: Example of a Publishable Regression Table

Dependent variable:

Per Capita FDI

Per Capita GDP 0.08∗∗∗

(0.01)
Political Stability 5.70∗∗

(2.57)
Corruption Control −5.56∗∗

(2.63)
Constant −56.92

(77.17)

Observations 50

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

sample size. This is an absolute must when reporting regression results. Second,

it contains plane language variable names, both for the dependent variable and

the predictors. It is an absolute no go to use the names of the variables as they

appear in the data frame, since these are typically extremely cryptic and, as such,

difficult to understand for anyone other than the author. Third, the table reports

both the parameter estimates and the standard errors. It is never sufficient to

report only the parameter estimates. The reader should be able to get a sense

of the precision of those estimates and the easiest way to communicate this is

via the standard errors. As per convention, these appear here in parentheses.

Fourth, there is an indication of the significance of the predictors using the

ubiquitous star notation. This notation is clearly explained in the footnote. The

only thing one might add here is that the p-values are for two-sided tests.6

One could add to the table. Most commonly, political scientists would add

a measure of fit. Since we haven’t discussed this topic yet in the context of

multiple regression models, I have chosen to refrain from doing so. In the next

chapter, we shall see an example that adds this information.

6Some journals are now beginning to shun the star notation and accept only estimates and
standard errors.
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It is useful to comment on the precision of the estimates and standard errors.

Here, I have opted to use a precision of two decimal places because this fits

nicely with the dependent variable, which is measured in dollars and cents. In

general, the precision should not be less than this. However, it should also not

be more than three decimal places. If we do more than that it amounts to little

more than feigned precision.

In this connection, it is useful to present a tip about how one can increase

the size of a coefficient associated with a covariate. Imagine that the covariate

in question has a partial regression coefficient of 0.0003. If we can only report

three decimal places, then the estimate would have to be reported as 0.000 with

proper rounding. This can look strange, especially if the effect is statistically

significant. In that case, we would see a null effect that is nevertheless statis-

tically significant. To change this, we can play a simple trick. If we transform

the original covariate by dividing it by 10,000, then a specification of the re-

gression model in terms of this new predictor will yield a regression coefficient

of 10, 000 · 0.0003 = 3. Many variables can be meaningfully transformed in

this manner. For example, instead of measuring income in dollars, we might

measure it in hundreds or thousands of dollars. Instead of measuring age in

years, we might measure it in decades, etc.

5.11 Conclusions

In this chapter, we showed how we can draw inferences about the linear re-

gression model. With this knowledge, we can already do a great deal with the

regression model. However, we can do more still and this is the topic of the

remaining chapters of Part II. A first step in this direction is to assess model fit

and outline procedures for comparing different models.



Chapter 6

Model Fit and Comparison

One of the enduring questions of empirical social science concerns model se-

lection. In Chapter 2, we saw that all models are simplifications; they are

approximations of a data generating process. But how good of an approxima-

tion are they? And is one model better than another? These are important

questions that take us well beyond the realm of null hypothesis testing. In this

chapter, we provide some basic insights from the econometric and statistical

literature.

6.1 Model Fit

6.1.1 The Coefficient of Determination

In Chapter 1, we introduced the coefficient of determination or R2. This co-

efficient can be used for the multiple regression model, as well. In practice,

however, it is often adjusted in that context, in order to take stock of the

number of predictors relative to the sample size.

R-Squared The basic definition of the coefficient of determination is no dif-

ferent in the context of the multiple compared to the simple regression model.

Thus, Equation 1.5 is once more appropriate. It may be useful, however, to

derive it from a new logic, namely that of the proportional reduction in error.

126
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From the perspective of prediction, we can generally identify two different

approaches. In the first, we try to make a prediction without considering any

logic we may have about predictors. For example, we may try to predict Bu-

rundi’s per capita FDI without bringing in information about this country’s per

capita GDP or political stability. Let us call this an unconditional prediction

because we do not condition on any predictors. A second approach is to take

advantage of the predictors, in hopes that it will improve our predictions. In this

case, then, we would predict Burundi’s FDI income from its values on per capita

GDP and political stability. Let us call this a conditional prediction because we

condition on a set of predictors.

Both approaches may result in prediction errors. Let E1 be a measure of

the predictive error that arises under the unconditional approach, whereas E2 is

a measure of this error under the conditional approach. Proportional reduction

in error measures now compare the size of the two errors. Specifically, we define

the proportional reduction in error as

PRE =
E1 − E2

E1

Logically speaking, our predictions can never be worse using information about

predictors than ignoring this information. In the worst case, the two predictive

errors are identical. Thus, 0 ≤ E2 ≤ E1. Consequently, 0 ≤ PRE ≤ 1. If

the predictors produce perfect predictions, then E2 = 0 and PRE = 1. If the

predictors do not help at all with the prediction, then E2 = E1, and PRE = 0.

The coefficient of determination is a PRE measure.1 Here, the unconditional

prediction is ȳ. In terms of minimizing the squared prediction errors, this is the

best prediction of a sample unit’s value on the dependent variable if we do not

know anything else about that unit. We define E1 in terms of this squared

prediction error:

E1 =
∑
i

(yi − ȳ)2 = SST

The conditional prediction is ŷi = β̂0 +
∑

k β̂kxik. We define E2 in terms of

1It is certainly not the only one. Another example is Goodman and Kruskal’s λ.
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the residuals:

E2 =
∑
i

e2
i = SSE

The PRE is now

PRE =
SST − SSE

SSE
= 1− SSE

SST
= R2

This is identical to Equation 1.5.

From the analysis of variance (ANOVA), we know that SST = SSR+SSE,

so that the PRE may also be written as:

PRE =
SSR+ SSE − SSE

SST
=
SSR

SST
= R2

Consequently,

Equation 6.1: Coefficient of Determination

R2 =
SSR

SST
= 1− SSE

SST

This means that the coefficient of determination can be computed directly from

the components of the ANOVA table.

Let us return to the data from Table 4.2 and the regression of per capita FDI

on per capita GDP and political stability. Here, we find that SSE = 4, 069, 328

and SSR = 6, 627, 656, so that SST = 10, 696, 984. If we divide 6,627,656

by 10,696,984, we obtain R2 ≈ 0.620. We explain around 62 percent of the

variance in per capita FDI.

Adjusted R-Squared A major drawback of the coefficient of determination is

that it never decreases when we add new predictors, even when those predictors

are utterly useless for the prediction of the dependent variable. Moreover, the

coefficient of determination does not at all consider the number of predictors

that we include in the model relative to the sample size. Linking the size of the
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model, in terms of the number of unknown parameters it contains, to the sample

size seems sound statistical practice. Indeed, Lehmann (1990, , pp. 160-161)

attributes the following quote to Sir Ronald Fisher: “More or less elaborate

forms [of the model] will be suitable according to the volume of the data.” This

would suggest that the quality of a model—in the sense of its fit—should take

into account both the sample size and the model complexity.

These considerations have caused the development of the so-called adjusted

R2:

Equation 6.2: Adjusted Coefficient of Determination

R̄2 = 1− SSE/(n−K − 1)

SST/(n− 1)
= 1− MSE

MST

Here MST is the mean square of the total, which essentially is the sample

variance of the dependent variable.

Asymptotically, R̄2 → R2 for a finite K. In small samples, however, the

adjusted will be less than the regular R-squared. Hence, R̄2 ≤ R2. A further

property of the adjusted R-squared is that it, unlike R2, can take on negative

values.

In general, I recommend reporting the adjusted R-squared for the multiple

regression model. This is part of the standard output of almost all statistical

packages, including R. Of course, the coefficient can also be computed by hand,

either from the ANOVA table or from the regular R-squared.

Consider the earlier regression of per capita FDI on per capita GDP and

political stability. For this regression, n = 50. We have also seen that SST =

10, 696, 984 and SSE = 4, 069, 328. Hence,

R̄2 =
4069328/(50− 2− 1)

10696984/(50− 1)
≈ 0.603

Thus, the adjusted R-squared is only slightly below the regular R-squared that

we computed earlier.

It is also possible to convert the regular R-squared directly into an adjusted
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R-squared. It is easily demonstrated that Equation 5.2 can also be written as

R̄2 = 1−
(
1−R2

) n− 1

n−K − 1

(see Appendix C.2). In our case, (n−1)/(n−K−1) = 1.043. We have already

seen that R2 = 0.620. Hence, R̄2 = 1− (1− 0.620) · 1.043 = 0.603.

The Relationship between R2 and the F-Statistic It is sometimes argued

that the F-statistic does not measure model fit. But this is not actually true

because there is a simple mathematical relationship between the statistic and

the coefficient of determination:

F =
R2

1−R2

n−K − 1

K

(see Appendix C.2). We see that F = 0 when R2 = 0. We also see that

F → ∞ when R2 = 1 (assuming finite n). Thus, there is a clear relationship

between model fit, as measured by the coefficient of determination, and the

F-test.

6.1.2 The Root Mean Squared Error

Next to the ubiquitous coefficient of determination, it is also possible to assess

model fit using the root mean squared error or residual standard error. This

is simply the square root of the mean squared error:

Equation 6.3: Root Mean Squared Error

RMSE =
√
MSE =

√ ∑
1 e

2
i

n−K − 1

This is measured on the same scale as the dependent variable. A value of 0

means that there are no prediction errors: the model fits the data perfectly. The

upper-bound of the RMSE depends on the scale of the dependent variable.

In the FDI example, we saw that SSE = 4, 069, 328. With 50 observations
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and two predictors, this means that MSE = 86, 581.45. Taking the square root

yields RMSE = 294.25. We can judge the size of this error by comparing it

to the empirical range of the dependent variable, which is 2736.61. The RMSE

covers around 11 percent of the range, which can be considered small. Thus,

we would conclude that the model fits the data quite well.

At the start of the 1990s, there was considerable debate about the relative

merits of the RMSE versus the R-squared (Achen, 1990; King, 1990; Lewis-

Beck and Skalaban, 1990). The R-squared has some well-known disadvantages,

including the lack of a known sampling distribution. Critics argued that ev-

erything we need to know about model fit can be gleaned from the RMSE.

By now, the debate has subsided. Most political scientists continue to report

R-squared values in their papers, whereas a minority opts for the RMSE. It is

really a matter of taste which of these fit measures will be reported and, in case

of doubt, you can simply report both.

6.1.3 Reporting Regression Results with Fit Statistics

In Chapter 5, we discussed how one should report regression results. At that

time, we did not include any information about model fit. Generally, political

science journals want to see such information. One way to present it is shown

in Table 6.1, which pertains to the regression of per capita FDI on per capita

GDP and political stability. Here the fit information—both the RMSE and the

adjusted-R2—is provided inside the table. An alternative is to provide this

information in the note below the table, although this is less common.2

6.2 Model Comparison

So far, we have generally considered only one model for the data. This corre-

sponds to a world in which there is only one theory for the data. This theory is

one that we have chosen because we think it is the best approximation of the

DGP.

2Like Table 5.2, Table 6.1 was generated using the stargazer library.
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Table 6.1: A Publishable Regression Table with Fit Measures

Dependent variable:

Per Capita FDI

Per Capita GDP 0.08∗∗∗

(0.01)
Political Stability 1.91

(1.91)
Corruption Control −116.27

(74.49)

Observations 50
Adjusted R2 0.60
Residual Std. Error 294.25 (df = 47)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This account of science is quite simplistic, however. In most cases, we do

not know a priori what the best model is. What we have instead is a number

of competing hypotheses, each providing a different account of the DGP. An

important goal of our research is to sort out which model in a set of models is

the best.

Indeed, one could even argue with Chamberlin (1965) that the idea of en-

tertaining multiple models is extremely healthy for science. Rather than settling

on a particular model a priori, which we then try to “prove” with all our might,

we might consider a number of partially competing and partially overlapping

models. Each model reveals different elements of the data. Some may be sim-

ple, others may be complex. In the end, we wish to ascertain which model

provides the best account of the data, keeping in mind that one of the purposes

of modeling is to keep things simple when at all possible. We thus have a rather

open-minded attitude, entertaining multiple accounts of the data all at once.

Laudable as this open-mindedness may sound, how is one to decide in the

end which model is best? In this section, we shall outline a number of procedures

that have been proposed over the course of several decades of methodological

research. A particularly promising approach is the use of the Akaike Infor-
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mation Criterion, which we shall discuss in considerable detail as it offers an

elegant solution to the task of selecting a model.

6.2.1 Nested versus Non-nested Models

One distinction that figures prominently in the literature is that between nested

and non-nested models. A model is nested inside another model when it may

be viewed as a subset of the latter. When this is not the case, then we say that

the models are non-nested.

To determine our thoughts, let us consider the data reported in Chirot

and Ragin (1975) and replicated in Table 6.2. These data pertain to the de-

terminants of the intensity (I) of peasant revolt in Romania in 1907. Those

determinants can be divided into two sets. The first set consists of the com-

mercialization of agriculture (C) and traditionalism (T). One could call these

transitional society predictors. The second set consists of the strength of the

middle peasantry (M) and inequality of land ownership (G). We call these the

structural predictors.

Imagine that we formulate the following two regression models for the data

in Table 6.2:

Model I: Ii = β0 + β1Mi + β2Gi + εi

Model II: Ii = β0 + β1Mi + β2Gi + β3Ci + β4Ti + εi

This is an example of nested models: Model I is a subset of Model II, which

comes about by setting β3 and β4 equal to 0. Now consider the following

setup, which actually corresponds to the way in which Chirot and Ragin (1975)

approach their data:

Model I: Ii = β0 + β1Mi + β2Gi + εi

Model II: Ii = β0 + β1Ci + β2Ti + εi

These two models are not nested: Model I is not a subset of Model II or vice

versa.

More generally, consider the modelsM1 andM2. WhenM1 : y = X1β1+

ε andM2 : y = X1β1 + X2β2 + ε, then we say thatM1 is nested insideM2.
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That is, we obtainM1 by stipulating β2 = 0. However, ifM1 : y = X1β1 +ε

andM2 : y = X2β2 +ε, then the two models are not nested. This is true even

though X1 and X2 may share some common variables in the case of non-nested

models.

The distinction between nested and non-nested models is relevant only for

model comparison approaches that take the form of hypothesis tests. It is

actually irrelevant for the Akaike Information Criterion. This is just one reason

why this criterion is so powerful.

6.2.2 Model Comparison Through Hypothesis Testing

Nested Models When we consider the general formulation of nested models,

it is clear that we can derive M1 from M2 by setting β2 = 0. If we formulate

this restriction as a null hypothesis, i.e., H0 : β2 = 0, then we can use an

F-test to perform the model comparison. If we can reject the null hypothesis,

then we would decide in favor of M2. If we fail to reject the null hypothesis,

then we would decide in favor of M1 by virtue of its greater parsimony. We

would conclude that we do not need the additional predictors in X2, as they

add nothing to the model fit.

The previous chapter provides all of the necessary tools to perform model

evaluation in this manner. Using either a one- or two-step approach, we can

derive the F-statistic that allows us to test the null hypothesis. In the two-step

approach this statistic is equal to

(SSE1 − SSE2)/K2

SSE2/(n−K1−K2)
∼ F [K2, n−K1 −K2]

Here, K1 is the number of predictors in X1, including the constant, and K2

is the number of predictors in X2. The one-step approach obviously gives the

same result.

Let us apply the approach to the data in Table 6.2. We define M1 : Ii =

β0 +β1Mi+β2Gi+εi andM2 : I1 = β0 +β1Mi+β2Gi+β3Ci+β4Ti+εi. We

favor M2 over M1 if we can reject H0 : β3 = β4 = 0. Using the R procedures

outlined in the previous chapter, we obtain F = 15.537. When referred to a
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F [2, 27], we obtain p = 0.000. Hence, we reject H0 and decide in favor of the

more complex model.

Non-Nested Models Non-nested models are more difficult to evaluate using

hypothesis testing, but a useful procedure—the so-called J-test—was outlined

by Davidson and MacKinnon (1981). Imagine we have two competing models:

M1 y = X1β1 + ε

M2 y = X2β2 + ε

The fundamental logic of the J-test is to bring these two models together into

a single model:

y = (1− α)X1β1 + αX2 + ε

If α = 0, then this equation obviously reduces to y = X1β1 + ε, which corre-

sponds to M1. On the other hand, if α = 1, then we obtain y = X2β2 + ε,

which is M2. We can now turn the decision between the models into a test of

H0 : α = 0. If we fail to reject this hypothesis, than we settle on M1. On the

other hand, if we reject this hypothesis, then we opt for M2.

The problem with this setup is that we do not have sufficient information

to estimate α; this parameter is not identified. We can identify α by substi-

tuting the unbiased OLS estimator for β2, which is exactly what Davidson and

MacKinnon (1981) proposed. Hence,

Equation 6.4: J-Test

1. Estimate y = (1− α)X1β1 + αX2β̂2 + ε∗

2. Test H0 : α = 0 using

α̂

ŜE[α̂]
∼ N (0, 1)

Here, we should keep in mind that the standard normal sampling distribution
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Figure 6.1: J-Test for Two Models of Romanian Peasant Rebellion

Note: Obtained using jtest in the lmtest library. Model 1 is the structural model, whereas
Model 2 is the transitional society model of peasant rebellion.

requires that the sample size is not too small.

In R, the procedure is automated in the lm package. We start by estimating

the two models. Let m1.fit and m2.fit contain the estimation results of M1

and M2, respectively. Now, the J-test can be obtained using

l i b r a r y ( l m t e s t )

j t e s t (m1 . f i t , m2 . f i t )

Let us apply the procedure to the data in Table 6.2. Chirot and Ragin (1975)

propose two models: (1) a structural model that includes the predictors M and

G, and (2) a transitional society model that, in its simplest form, includes the

predictors C and T. Let M1 and M)2 denote the structural and transitional

society models, respectively. When we apply the jtest command, we obtain

the results shown in Figure 6.1. Let us focus on the first result, which is labeled

M1 + fitted(M2). The J-test here corresponds to

Ii = (1− α) (β0 + β1Mi + β2Gi) + α
(
β̂3Ci + β̂4Ti

)
+ ε∗i

(We see that the adjective “fitted” means that we use the OLS estimates.) For

this setup, α̂ = 0.96. Since this estimate is close to one, it would suggest that

the weight of the evidence favors the transitional society model. A formal test

of the null hypothesis α = 0 confirms this. The test statistic is 5.68 and has

an associated p-value of 0.00. Hence, there is clear support for the transitional
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societies model.

The problem here is that it is quite arbitrary whether we select M1 or M2

as the fitted model. What if we reverse the order? Then we can set up the

J-test in terms of the following model:

Ii = (1− α) (β0 + β3Ci + β4Ti) + α
(
β̂1Mi + β̂2Gi

)
+ ε∗i

This model corresponds to the second result in Figure 6.1, which is labeled M2 +

fitted(M1). The estimate for α in this setup is 0.28, which is not statistically

significant by any stretch of the imagination (p = 0.49). Thus, we conclude

against the structural and in favor of the transitional societies model.

When we take into account the possibility of reversing the nature of the

fitted model, then we obtain four logical possibilities:

1. The coefficient α is not significant for either M1 + fitted(M2) or M2 +

fitted(M1). In this case, we would conclude that neither model is useful

for the data at hand.

2. The coefficient α is not significant for M1 + fitted(M2), but it is for M2

+ fitted(M1). In this case, the J-test favors M1.

3. The coefficient α is significant for M1 + fitted(M2), but it is not for M2

+ fitted(M1). The J-test now favors M2. This is the scenario that we

encountered for the Chirot and Ragin (1975) data.

4. The coefficient α is significant for M1 + fitted(M2) and for M2 + fitted(M1).

Both models are now accepted; there is not enough information in the data

to discriminate between the models.

In light of these different scenarios, it is essential that we consider both M1 +

fitted(M2) and M2 + fitted(M1) when conducting the J-test in R.

Hypothesis Testing Approaches: An Assessment Hypothesis testing ap-

proaches to model evaluation are widespread in the social sciences. Nevertheless,

they suffer from a number of weaknesses. To our minds, one of the more sig-

nificant problems is that they tend to produce binary decisions: either M1 or
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M2 is correct. Sometimes things are much less clear cut and there is support

for both models, but in different degrees. Those subtleties cannot be captured

in hypothesis tests.

Another disadvantage is that the procedures are quite different for evaluating

nested versus non-nested models. Although there are methods for evaluating

non-nested models, the literature on hypothesis testing in this area is much less

developed than it is for nested models. For example, the J-test can handle only

two models, which is a significant limit. For all of these reasons, it is useful to

look for alternatives to hypothesis testing. The Akaike Information Criterion is

one such alternative.

6.3 The Akaike Information Criterion

The Akaike Information Criterion (AIC) is a numeric measure of the quality of

an estimated model. The criterion is connected to the Kullback-Leibler Infor-

mation, a criterion that allows us to determine how close a model is to the

truth (see Appendix C.3). However, the AIC can be used to evaluate competing

models without us having to know what the true model is. This is a major

benefit because we generally do not know the true model. Other benefits of the

AIC include that it can be used to cover any number of models, which may or

may not be nested. Moreover, the AIC can be parlayed into a set of weights

that give a fine-grained metric for evaluating different models. Thus, binary

decisions can be avoided.

6.3.1 Defining the AIC

To obtain the AIC of a model, we need two ingredients: (1) the log-likelihood,

` of the model and (2) the number of estimated parameters, K. The AIC is

now defined as

Equation 6.5: Akaike’s Information Criterion

AICj = −2`j + 2Kj
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Table 6.3: AIC Example with Hypothetical Data

Model ` K AIC

I -1426.577 5 2863.054
II -1426.635 4 2861.270
III -2655.705 2 5315.410

Note: Model I contains three pre-
dictors; the remaining parameters
are the constant and error variance.
Model II contains two predictors.
Finally, Model III contains no pre-
dictors.

Here, the subscript j identifies the jth model that we estimate. The derivation

of Equation 6.5 is sketched in Appendix C.3.

One way of looking at the AIC is that it employs two criteria for assessing

the quality of a model. First, it considers model fit through −2`j . The smaller

this value is, the better the fit. Next, it considers parsimony through 2K. The

smaller this term is, the more parsimonious our model is. We would like to

optimize both fit and parsimony (see Chapter 2). In line with this principle,

then, we would like AIC to be as small as possible.

How do we do this in practice? Imagine that we estimate M different models

with the same data, ensuring that the sample size remains constant throughout.

We now obtain an equal number of AIC values. We now favor the model that

yields the smallest AIC. This model is the best in the set of models that we

estimated.

The use of Equation 6.5 is illustrated in Table 6.3. Here we postulate three

regression models. In reversed order, Model III contains no predictors. The

only parameters estimated in this model are β0 and σ2, whence K = 2. The

(hypothetical) log-likelihood for this model is -2655.705; this is the value of

the log-likelihood function at the maximum likelihood estimates of β0 and σ2.

Hence,

AICIII = −2 · (−2655.705) + 2 · 2 = 5315.410
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Model II adds two predictor variables, so that K = 4. At the maximum like-

lihood estimates, the value of the log-likelihood function for this model is -

1426.635. Performing an analogous computation to the one we just saw for

model III, we obtain AICII = 2861.270. Finally, Model I adds yet another pre-

dictor, bringing the total to three predictors and K = 5. With a log-likelihood

function of -1426.527, we obtain AICI = 2863.054. We see that the smallest

AIC-value is obtained for Model II. Hence, this is our preferred model among

the three models that we estimated.

It is worthwhile to dwell a little longer on these calculations and conclusions.

First it is important to stress the qualifier “among the three models that we

estimated.” We do not know if Model II is the best model in general. But for

the data at hand and among the models that we estimated, it is the best.

Second, the computations reveal how AIC considers both fit and parsimony.

Model I fits the data better than Model II, witness the smaller value of its log-

likelihood function. However, the improvement in fit is so small that it does

not warrant the sacrifice in parsimony, i.e., the extra parameter that needs to

be estimated.

Third, if we compare AICI and AICII , they are not worlds apart. Indeed,

the differences between these AIC values is rather small, especially when com-

pared to their difference to AICIII . This suggests that we may favor Model II

over Model I, but certainly not to such an extent that we would conclude there

is nothing to Model I. Later in this chapter, we shall see how one can quantify

the likelihoods of different models so that we can determine the comparative

plausibility of each.

Equation 6.5 is appropriate for large samples. More specifically, it may be

used when n/K > 40, i.e., we have over 40 observations for each parameter

that we estimate (Burnham and Anderson, 2004). If /K ≤ 40, then we should

use the small sample version of Akaike’s Information Criterion:
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Equation 6.6: Small Sample Version of Akaike’s Information Cri-

terion

AICcj = −2`j + 2Kj +
2Kj(Kj + 1)

n−Kj − 1

Here, the superscript “c” stands for corrected. We can think of the last term in

Equation 6.6 as an extra penalty for over-fitting in small samples. By this, we

mean that we are fitting more parameters than is necessary or warranted. For

finite Kj , this penalty term obviously goes to zero when n goes to infinity. We

then again obtain Equation 6.5.

Let us apply Equation 6.6 by revisiting the two models proposed by Chirot

and Ragin (1975). Each model estimates four parameters: three regression

coefficients and an error variance. With n = 32, we have n/K = 8, so that we

should clearly be using Equation 6.6. For each model, the log-likelihood at the

maximum likelihood estimates is defined as

`j = −n ln σ̂j − .5n ln(2π)− SSEj
2σ̂2

j

For the structural model, we have: n = 32, SSE = 88.032, and σ̂2 =

SSE/n = 2.751. Substitution into the log-likelihood function yields `struc =

−61.667. For the transitional society model, we have: n = 32, SSE = 41.640,

and σ̂2 = SSE/n = 1.301. Substitution yields `trans = −49.619. For the

sake of this example, let us estimate a third model that combines the predic-

tors of the structural and transitional society models. For this model, n = 32,

SSE = 40.928, and σ̂2 = SSE/n = 1.279. This yields `combi = −49.343.

With the preparatory work out of the way, we can now perform the compu-

tation of AICc; this is shown in Table 6.4. For example, the computation of

the AIC of the combined model is given by

AICcombi = −2 · (−49.343) + 2 · 6 +
2 · 6 · (6 + 1)

32− 6− 1
= 114.047

From the results, it is clear that the transitional society model is the best of the
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Table 6.4: AICc for Three Models of Romanian Peasant Rebellion

Model ` K 2K(K+1)
n−K−1 AICc AIC

Structural -61.597 4 1.481 132.677 131.195
Transitional Society -49.619 4 1.481 108.720 107.239
Combined -49.343 6 3.360 114.047 110.687

Note: Based on the data in Table 6.2.

three models shown here, since it has the smallest AICc.

For comparison, the last column in Table 6.4 shows the normal (large sam-

ple) AIC values. We see that the distance between the corrected AICs of the

transitional society and combined models is much larger than that between the

regular AICs. The regular AIC already recognizes that the combined model

does not fit the data much better than the transitional society model, so that

the addition of 2 extra parameters is not really worthwhile. The corrected AIC

penalizes the inclusion of these parameters in the combined model even more

because it recognizes that 2 additional parameters on a sample size of 32 places

a lot of extra demand on relatively scarce data.

6.3.2 AIC in R

We do not actually have to compute the log-likelihood functions by hand in R.

We can extract them, as well as the number of estimated parameters, by using

the following syntax:

l o g L i k ( t r a n s . f i t )

where trans.fit contains the estimation results from the transitional society

model. This generates the output shown in Figure 6.2. We see that the log-

likelihood for the model is -49.61934 and that it contains 4 parameters (since

df = 4).

The information shown in Figure 6.2 allows us to compute the AIC by hand.

But we do not actually have to do this either, since R can directly return AIC

or AICc. To obtain AIC, we can issue the following command:
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Figure 6.2: Extracting the Log-Likelihood from a Regression Object in R

Note: df indicates the number of estimated parameters in the model.

AIC ( t r a n s . f i t )

To obtain AICc, we employ the following function:

AICc <− funct ion (m) {
l n L <− l o g L i k (m) [ 1 ]

n <− a t t r ( l o g L i k (m) , ” nobs ” )

K <− a t t r ( l o g L i k (m) , ” d f ” )

a i c . c <− −2∗ l n L + 2∗K + (2 ∗K∗ (K+1))/ ( n−K−1)

return ( a i c . c )

}

Application of the two commands yields the results shown in Figure 6.3.

6.3.3 Delta Values, Model Likelihoods, and Akaike Weights

A limitation of the AIC values is that they are influenced strongly by the sample

sizes. This can easily result in misunderstandings. For example, imagine that

AIC1 = 108200 and AIC2 = 108210. One might be inclined to say that

the AIC difference between these two models is so small that they are, for all

intents and purposes, equally good. After all, what is 10 points difference on a

magnitude of over 100 thousand? The magnitudes, however, may be so large

because the sample size is large. Remember that one of the components of the

AIC is the log-likelihood, and this has several terms in n in the regression model.

Hence, large sample sizes generate large negative values of the log-likelihood,

which in turn produce large positive values of AIC (due to the multiplication

by -2). Without adjusting for these effects, evaluating differences in AIC values

can be misleading.
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Figure 6.3: Extracting AIC and AICc from a Regression Object in R

Note: The first value is for AIC and the second value for AICc.

Delta Values Delta values of the AIC are obtained by subtracting the mini-

mum AIC value in a set from each of the model AICs.

Equation 6.7: The Delta Value of a Model

∆j = AICj −AICMin

By subtracting the minimum AIC, we remove those components that are heavily

influenced by the sample size.

Let us return to the hypothetical example from Table 6.3. Here, we saw that

Model II achieved the lowest AIC value. Hence, AICMin = AICII = 2861.270.

We now subtract this value from the AICs of all of the models. The result is

shown in the third column of Table 6.5.

The delta values can be interpreted directly. Burnham and Anderson (2004)

provide the following rules of thumb:

∆j ≤ 2 Substantial support

4 ≤ ∆j ≤ 7 Weak support

∆j > 10 No support

By these guidelines, both Model I and II receive substantial support, whereas

Model III receives no support.

Model Likelihoods The likelihood or evidence of the model given the data is

equal to
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Table 6.5: Delta Values, Model Likelihoods, and Akaike Weights with Hypo-
thetical Data

Model AIC ∆ L w

I 2863.054 1.784 0.410 0.291
II 2861.270 0.000 1.000 0.709
III 5315.410 2454.140 0.000 0.000

Note: Based on the results from Table 6.3.

Equation 6.8: The Likelihood of a Model

L(Mj |Data) = exp(−.5∆j)

By definition, the likelihood of the best model is equal to 1. The likelihoods of

the models from Table 6.3 are shown in the fourth column of Table 6.5.

Based on the model likelihoods, we can define the evidence ratios. These

are the relative likelihoods of two models (Burnham and Anderson, 2004; Wa-

genmakers and Farrell, 2004). In our case, we can define three unique evidence

ratios:

L(MI |Data)

L(MII |Data)
=

1.000

0.410
= 2.440

L(MI |Data)

L(MIII |Data)
=

1.000

0.000
→∞

L(MII |Data)

L(MIII |Data)
=

0.410

0.000
→∞

The evidence ratios, too, can be used to shed light on the models. For example,

the evidence ratio of Model I relative to Model II is 2.44. This means that

Model I is 2.44 more likely than Model II given the data. When the evidence

ratio is very large, as in the comparisons between Model I and Model II, on one

hand, and Model III, on the other, then we may conclude that the model in the

denominator is very poor for the data at hand. Note that the evidence ratios

depend only on the likelihoods of the two models that are being compared; other
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models play no role.

Akaike Weights The Akaike weight may (heuristically) be viewed as a mea-

sure of the probability that some model is the best Burnham and Anderson

(2004); Wagenmakers and Farrell (2004). It can be obtained directly from the

model likelihood:

Equation 6.9: The Akaike Weight

wj =
L(Mj |Data)∑K
k=1 L(Mk|Data)

Here, we assume that we have estimated a total of K > 1 different models.

The denominator is equal to the sum of the likelihoods of all of the models

that we have estimated. In Table 6.5, this is 1.410. We obtain the weights by

dividing each likelihood by this sum. The results are shown in the last column

of Table 6.5. We see that there is a probability of 0.291 that Model I is the best

model, whereas the probability that Model II is best is 0.709. There is essentially

no chance that Model III is the best model. We now obtain a relatively nuanced

view of the quality of the different models. We can readily dismiss Model III.

We also know that chances are that Model II is the best model. However, there

remains a reasonably large probability that Model I is the best model.

Taking Advantage of R The work that we have done here by hand is auto-

mated in the qpcR library in R. I illustrate this using the corrected AIC values

from Table 6.4. We make these the elements of a vector aic, which is then fed

into the akaike.weights command:

l i b r a r y ( qpcR )

a i c <− c ( 1 3 2 . 6 7 6 5 , 1 0 8 . 7 2 0 2 , 1 1 4 . 0 4 6 6 )

a k a i k e . weights ( a i c )

The output is shown in Figure 6.4. We see that ∆struc = 23.956, ∆trans =

0.000, and ∆combi = 5.326. This produces model likelihoods of Lstruc =
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Figure 6.4: Delta Values, Model Likelihoods, and Akaike Weights in R

Note: The input data are from Table 6.4.

0.000, Ltrans = 1.000, and Lcombi = 0.070. Consequently, wstruc = 0.000,

wtrans = 0.935, and wcombi = 0.065. In the set of models that I estimated,

then, the structural model has effectively no chance of being the best, whereas

the transitional society model has a 0.935 probability of being the best. This

leaves a relatively small probability of 0.065 that the combined model is the

best. In this case, then, there is overwhelming evidence for one particular model

specification.

6.4 The Bayesian Information Criterion

Several alternatives to Akaike’s Information Criterion exist. The best known of

these is the Bayesian Information Criterion or BIC:

Equation 6.10: The Bayesian Information Criterion

BICj = −2`j +Kj lnn

Hence, the BIC differs from AIC in the second term: Kj lnn in lieu of 2Kj .

The second term in BIC exceeds that of AIC when n > 8. This means that BIC

tends to penalize more than AIC for lack of parsimony (although not necessarily

more than AICc). Many statisticians like this and consequently favor BIC (but

see Burnham and Anderson, 2004).

Table 6.6 shows the BIC values for the three models estimated for the
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Table 6.6: BIC for Three Models of Romanian Peasant Rebellion

Model BIC AIC AICc

Structural 137.058 131.195 132.677
Transitional Society 113.102 107.239 108.720
Combined 119.481 110.687 114.047

Note: Based on the data in Table 6.2.

Chirot and Ragin (1975) data, along with AIC and AICc.3 Like AIC and

AICc, the BIC favors the transitional society model. The difference between

the combined and transitional society models are somewhat larger using BIC

than using AICc, but overall the differences are small.

6.5 Conclusion

In this chapter, we have spent considerable time on the topics of model fit and,

especially, model comparison. Comparing different models is crucial because

we never know the true model and usually can think of a number of different

specifications for the same data. It is also essential because our estimates for

a predictor do not just depend on the data but also on the other variables that

we add to the model. Unfortunately, a careful consideration of different model

specifications remains all too rare in the social sciences. There is no reason for

this, since there are powerful tools for engaging in model comparison. Akaike’s

information criterion is one of those tools, which I hope is now on your radar

when you start thinking about building models for your own data.

3The BIC values were obtained using R’s BIC command, which works identical to the AIC

command.



Chapter 7

Non-Linear Models

Scholars sometimes refer to the multiple regression model as the linear regression

model. This is a bit of a misnomer, since it suggests that we would not be

able to formulate non-linear regression models. In fact, the linearity of the

regression model pertains only to the model parameters: these enter the model

as multiplicative weights, not as powers. The multiple regression model does

not assume linearity in the variables. Consequently, it is possible to construct

a variety of non-linear models. These greatly increase the versatility of multiple

regression analysis.

In this chapter, we consider three types of non-linear model: polynomial,

logarithmic, and reciprocal regression. the differences between these models are

summarized in Table 7.1. All of these models replace the straight regression

line or plane with some form of curved geometry. The models differ in two

respects. First, is the curved relationship between the dependent variable and a

predictor monotonic or not? Second, is this relationship in some form bounded?

Table 7.1: Three Types of Non-Linear Regression Analysis

Model Monotonic Bounded

Polynomial Regression No No
Logarithmic Regression Yes No
Reciprocal Regression Yes Yes

150
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By contemplating these questions, you can choose an appropriate non-linear

regression model.

7.1 The Polynomial Regression Model

7.1.1 What Is Polynomial Regression?

In a polynomial regression model, we include a predictor as well as as increasing

powers of that predictor. That is,

Equation 7.1: The Polynomial Regression Model

yi = β0 + β1xi + β2x
2
i + β3x

3
i + ·+ βPx

P
i + εi

= β0 +
P∑
p=1

βpx
p
i + εi

This is the so-called P th-order polynomial regression model. Since it is linear in

the parameters it remains a linear regression model and can be estimated using

OLS.

As an example, consider the determinants of per capita foreign direct in-

vestment in Africa. So far, we have considered relatively simple models, which

contain only per capita GDP, political stability, and in some cases corruption

control (see Chapters 4-5). Now we are interested in a recipient’s country level

of democracy. We stipulate a non-linear effect for democracy. The argument is

that investors are risk averse. They know what they can expect from a democ-

racy. They also know this for an autocracy. What they consider risky are hybrid

regimes that are neither full democracies nor full autocracies and, as such, ar ill

defined. We assume that risk perceptions bear a relationship on the amount that

is invested. With this theoretical argument, we expect a U-shaped relationship

between a country’s level of democracy and per capita FDI. As one moves from

low to middling levels of democracy, per capita FDI first declines. This is the

move from clear autocracies to hybrid regimes. At some point, however, further
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increases in democracy result in higher levels of per capita FDI. This is the

move from hybrid regimes to full democracies. Since the relationship between

democracy and per capita FDI is not expected to be monotonic, a polynomial

regression model is in order. In this case. we need a polynomial of order 2 to

capture the shifting sign of the relationship between democracy and per capita

FDI. The estimated model is thus

FDIi = β0 + β1demoi + β2demo2
i + εi

This model can be estimated in R using the following syntax:

f d i . f i t <− lm ( f d i p c ˜ poly ( democ , d e g r e e =2, raw=TRUE) ,

data=a f r i c a )

Much of this command will look familiar (see Chapter 5). Indeed, the only new

element is poly, which stands for polynomial. This option has several important

arguments. First, we should specify the variable for which the polynomial terms

should be defined, in this case democ, which stands for democracy. Next, one

should define the order of the polynomial. In this case, we want a 2nd-order

polynomial, which means that we specify degree=2. Finally, we add raw=TRUE,

which prevents R from trying to transform the polynomial terms in such a way

that they are no longer correlated with each other. With this command, R

will now include both the linear and quadratic terms of democracy. A graphical

display of the regression line can be found in Figure 7.1. The graph indeed shows

the expected curvilinear effect. This graph was obtained using the effects

library:

l i b r a r y ( e f f e c t s )

p lot ( E f f e c t ( ”democ” , f d i . f i t , se=FALSE ) ,

x l a b=” Democracy ” , y l a b=” P r e d i c t e d FDI Per

C a p i t a i n USD” , main=”” )
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Figure 7.1: Democracy and Foreign Direct Investment in Africa
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Note: The OLS estimate for the linear effect of democracy is β̂1 = −428.40; the OLS estimate
for the quadratic effect is β̂2 = 40.00.

7.1.2 Interpretation

Marginal Effects In our example, the predictor variable is continuous in na-

ture. Hence, interpretation can proceed using marginal effects. For the polyno-

mial regression model in Equation 7.1,

dµ

dx
= β1 + 2β2x+ 3β3x

2 + · · ·+ PβPx
P−1

=
P∑
p=1

pβpx
p−1

This is the instantaneous rate of change, which depends on the value of the

predictor X. This is also clearly visible in Figure 7.1.

Let us illustrate this for two different values of democracy. The estimated

marginal effect for democracy is β̂1 +2β̂2x. First, consider a level of democracy

of 3. With β̂1 = −428.20 and β̂2 = 40.00 (see Figure 7.1), the marginal effect

is −428.20+2 ·40.00 ·3 = −188.40. At this level of democracy, then, per capita

FDI is on a negative trajectory. Next, consider a level of democracy of 6. Now
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the marginal effect is −428.20 + 2 · 40 = 51.60. At this level of democracy, per

capita FDI is on an upward trajectory.

One of the uses of marginal effects is to compute the extremes of the re-

gression line for a given predictor, while assuming that all else remains constant.

These can be obtained by setting the marginal effect for the predictor X equal

to 0. Let us call the solution x0. Three kinds of extremes can now be identified

(also see Appendix A.4):

1. Minimum: If the marginal effect is negative to the left of x0 and positive

to the right, then x0 is a minimum.

2. Maximum: If the marginal effect is positive to the left of x0 and negative

to the right, then x0 is a maximum.

3. Inflection Point: If the marginal effect has the same sign to the left and

the right of x0, then x0 is an inflection point.

Minimums and maximums constitute tipping points, in that the nature of the

relationship between the dependent variable and the predictor changes signs at

x0.

Consider, for example, our regression model of per capita FDI and democ-

racy. We set X = x0, set the marginal effect to 0, and solve for x0:

−428.20 + 2 · 40.00 · x0 = 0

This yields x0 = 5.36; at this level of democracy, which roughly corresponds to

Uganda, the marginal effect is 0. It is a minimum, as Figure 7.1 clearly reveals:

to the left of 5.36, the marginal effect is negative, whereas it turns positive to

the right of this value. Thus, we have a tipping point, just as the theoretical

argument about risk aversion implied.

Tipping points sometimes occur outside of the empirical range of a predictor.

For example, we could regress per capita FDI on political stability, and political

stability squared. Let β̂1 be the estimate for political stability; in a model

without other predictors, this is 8.10. Let β̂2 be the estimate for political

stability squared, which is -.04. The tipping point is now β̂1/(−2β̂2) = 95.73.
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Figure 7.2: Trade Openness and Foreign Direct Investment in Africa
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Note: The OLS estimate for the linear effect of trade openness is β̂1 = 49.885; the OLS
estimate for the quadratic effect is β̂2 = −0.686; the OLS estimate for the cubic effect is
β̂3 = 0.003.

Although this a feasible value of the political stability scale, which ranges from

0 to 100, there are no African countries with this high of a stability score. Thus,

the tipping point is never realized in the sample. It is important to check for

this issue to prevent problematic interpretations. A graphical display of the full

effect of the predictor will help a lot here. If you do not see a sign reversal in

this plot, then you know that the tipping point is not realized in the sample.

Now let us consider a more complex example. Imagine that we regress per

capita FDI onto trade openness, using a polynomial of order 3. The fitted

regression line is shown in Figure 7.2. The estimated marginal effect equation

is

∂µ̂

∂Open
= β̂1 + 2β̂2Open + 3β̂3Open2

= 49.885− 1.373Open + 0.009Open2

This is a quadratic equation, which is a bit more difficult to solve. Fortunately,
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R can help with this process via the rootSolve library:

l i b r a r y ( r o o t S o l v e )

f d i . f i t <− lm ( f d i p c ˜ poly ( openness , d e g r e e =3,

raw=TRUE) , data=a f r i c a )

marg . e f f <− funct ion ( x ) { coef ( f d i . f i t ) [ 2 ] +

2∗ coef ( f d i . f i t ) [ 3 ] ∗x + 3∗ coef ( f d i . f i t ) [ 4 ] ∗x ˆ2}
r o o t s <− uni root . a l l ( marg . ef f , c ( 2 7 , 1 5 8 ) )

r o o t s

The first line loads the rootSolve library. The second and third lines fit the

3rd order polynomial regression with trade openness. The fourth and fifth

lines define the marginal effects function, calling the OLS estimates from the

regression object fdi.fit. The sixth line finds the roots of the marginal effects

function and stores them in the object roots object. Important here is that we

set the range of the predictor. For our data, trade openness ranges between 27

and 158. The solutions that uniroot.all generates fall within this range. The

final line displays the roots. In our example, the first root is a value of trade

openness of 59.23, which constitutes a local maximum. The second root is a

value of trade openness of 94.01; this is a local minimum.

Discrete Changes An alternative approach to interpretation is to compute

the discrete change. Consider a model in which the conditional mean depends

on the P polynomial terms of the predictor X. We now let X move from x to

x+ ∆, while all other predictors remain constant. The discrete change is then

given by

∆µ =

P∑
p=1

βp(x+ ∆)p −
P∑
p=1

βpx
p

Consider again the model where we predict per capita FDI from democracy

and its square (Figure 7.1). Imagine that we move democracy from 4.12 (the

sample median) to 5.12. The discrete change in the predicted per capita FDI

would then be (−428.40·5.12+40.00·5.122)−(−428.40·4.12+40.00·4.122) =
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−58.80 dollars. This is the discrete change due to a unit increase in democracy,

starting at the median. The latter qualification is important because the starting

point matters for polynomial regression models of order 2 and above.

7.1.3 Testing Hypotheses

In a polynomial regression, we can perform two kinds of tests that should be

clearly distinguished. The first is a test for the overall significance of a predictor.

This involves all of the polynomial terms for that predictor. The second is a

test of the significance of a particular polynomial term; this involves only the

relevant term.

Let us illustrate the differences by looking once more at the regression shown

in Figure 7.1. One question we can ask is whether democracy is at all a statis-

tically significant predictor of per capita FDI. If it is not, then neither the linear

nor the quadratic term of democracy is different from zero. Thus, we formulate

the following null hypothesis: H0 : β1 = β2 = 0. We can test this hypothesis

with the Wald test procedure introduced in Chapter 5. In our case, we obtain

F = 2.9, which yields p = 0.069 when referred to a F [2, 41] distribution. Given

the small sample size, I would be inclined to set the Type-I error rate to 0.10,

which means that we would conclude that democracy is statistically significant.

We can now ask whether we really need the quadratic term for democracy.

To answer this question, we test the null hypothesis H0 : β2 = 0. This is more

limited then what we tested a moment ago. This hypothesis can be tested

using a t-test. From the standard R regression output, we obtain t = 2.123 and

p = 0.040. With a p-value this low, we reject the null hypothesis and conclude

that inclusion of the quadratic democracy terms makes statistical sense.

7.1.4 Settling on an Order of the Polynomial

When one performs a polynomial regression analysis, an important question is

how many polynomial terms should be fitted. In Figure 7.1, we stopped at a

polynomial of the second order, but why did not we add a cubic term or terms of

an even higher order? In principle, one could fit a polynomial of order n− 1, at

least if there are no other predictors. Such a model would fit the data perfectly.
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Table 7.2: Selecting the Order of the Polynomial for Democracy

Order R̄2 ∆R̄2 AICc ∆AICc

1 0.003 661.487
2 0.080 0.077 659.325 -2.162
3 0.087 0.008 660.425 1.100
4 0.078 -0.001 662.429 2.005

Notes: ∆R̄2 and ∆AICc are the changes
in the adjusted R-squared and corrected
AIC of the next lower order polynomial, re-
spectively.

In constructing a polynomial regression model, theory should be the first and

foremost consideration. If our theory foresees a tipping point, then a polynomial

of at least the second order should be specified. If one foresees an inflection

point, then the order of the polynomial should be at least three. One can add

more complexity if this makes theoretical sense and if the benefits outweigh the

loss of parsimony.

That said, statisticians sometimes take a more empiricist approach and let

the data speak to the order of the polynomial. This makes a lot of sense when

there is a lot of data, part of which can be set aside to learn and another part to

cross-validate what has been learned. Indeed, this is a very common approach

in the analysis of “big data.”

An empiricist approach typically starts by estimating a polynomial of order

1. In a next step, a quadratic term is added, followed by a cubic term, etc. At

each juncture, some fit criterion is evaluated. Oftentimes, this is the adjusted

R-squared, but one could also use AIC. As long as the fit criterion improves, we

continue to add polynomial terms. Once it begins to deteriorate, we stop.

Table 7.2 illustrates the process for the level of democracy as a predictor

of per capita FDI. We start with a polynomial of order 1. When we add a

quadratic term, both the adjusted R-squared and AICc improve.1 Adding the

cubic term, we still see an improvement of the adjusted R-squared. AICc, on

1We use AICc because the sample size is small in this example.
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the other hand, is already beginning to deteriorate. When we add a quartic

term as well, then both the adjusted R-squared and AICc worsen. My own

rule of thumb is that an increase in the polynomial is warranted if both the

adjusted R-squared and Akaike’s information criterion improve as a result. By

this standard, we should settle for a polynomial of order 2.

7.2 Logarithmic Models

Logarithmic models involve logarithms on one or both sides of the population

regression function. The underlying model is not linear in the parameters, but

by taking logarithms it is linearized. These models come in several forms and

have quite useful applications in the social sciences.

7.2.1 Log-Linear Models

The log-linear regression model, which is also known as the log-log or double-log

model, is given by

yi = eβ0xβ1i1 x
β2
i2 · · ·x

βK
iK e

εi

= α
K∏
k=1

xβkik exp(εi)

where α = expβ0. In this form, the model is not linear in the parameters, which

appear as powers. The model can be linearized, however, by taking the natural

logarithm of both sides of the equation:

Equation 7.2: The Log-Linear Model

ln yi = β0 +
K∑
k=1

βk lnxik + εi

This model is linear in the parameters and can be estimated using OLS. Since

the linearity comes about by taking logarithms, we call this the log-linear model.
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As an example, consider the regression of per capita FDI on per capita GDP.

Many economists would specify this as a log-linear model:

ln FDIi = β0 + β1 ln GDPi + εi

One would choose a log-linear model in this context to transform quantities in

the range from 0 to positive infinity (such as per capita GDP) into quantities

that are not bounded. Specifying a log-linear model in R is extremely easy:

f d i . f i t <− lm ( log ( f d i p c ) ˜ log ( gdppc ) , data = a f r i c a )

All one has to do, then, is to apply the log-function (which stands for the natural

logarithm) to the left- and right-hand sides of the tilde. The result is shown

in Figure 7.3.2 We observe a monotonic relationship between per capita GDP

and FDI. However, the rate of change is not constant, as the regression line is

concave.

The regression of log-per capita FDI on log-per capita GDP yields a partial

slope of 0.98. How do we interpret this? For the jth predictor in a log-linear

model, it can be shown that

βj =
∂y/y

∂xj/xj

(see Appendix C.4). This is an elasticity: it is the percentage change that

we can expect in the mean for a one percent increase in the predictor, ceteris

paribus. In our case, we have an estimate of 0.98, which means that a one

percent increase in per capita GDP is expected to increase per capita FDI by

0.98 percent. This is practically a 1-to-1 change.

7.2.2 Semi-Log Models

In the log-linear model, we wind up taking the logarithm of both the dependent

and predictor variables. There also exist models in which the logarithm is applied

2This was created using the effects library. The major change compared to the regular
syntax is the inclusion of transformation=list(link=log, inverse=exp) inside of the
Effect command.
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Figure 7.3: GDP and Foreign Direct Investment in Africa
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Note: Log-linear model with β̂0 = −3.22 and β̂1 = 0.98.

to only one of these variables. These are known as semi-log models and they

come in two variants: log-lin and lin-log models.

Log-Lin Models Consider the following model, which is non-linear in the

parameters:

yi = exp (β0 + β1xi + εi)

We can linearize this model by taking the natural logarithm of the dependent

variable:

Equation 7.3: A Log-Lin Model

ln yi = β0 + β1xi + εi

Since the left-hand side is a logarithm, while the right-hand side is a linear

function, we call this the log-lin model.

A major application of log-lin models is in modeling growth. In fact, if we
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Table 7.3: Indian Population Data 1901-2011

Year t Population Year t Population

1901 0 23,83,96,327 1961 6 43,92,34,771
1911 1 25,20,93,390 1971 7 54,81,59,652
1921 2 25,13,21,213 1981 8 68,33,29,097
1931 3 27,89,77,238 1991 9 84,64,21,039
1941 4 31,86,60,580 2001 10 1,02,87,37,436
1951 5 36,10,88,090 2011 11 1,21,08,54,977

Notes: Data can be found on the Indian Census.

substitute time (t) for x, then Equation 7.3 gives the exponential growth model

ln yt = β0 + β1t+ εt. The interpretation of β1 in this model is as follows (see

Appendix C.4):

β1 =
∂y/y

∂t

This gives the relative change in Y for an absolute change in t and may be

interpreted as the average rate of growth.

As an example, consider the data in Table 7.3; these are decennial census

data showing the population of India. We estimate the following exponential

growth curve model:

ln Pop = β0 + β1t+ ε

We start at t = 0. Every unit increase in t corresponds to a decade in real time

The OLS estimate of the intercept is 19.069, whereas the estimate of the slope

is 0.159. This means that adding another decade is expected to increase the

population by roughly 15.9 percent.

Lin-Log Models In the lin-log model, the left-hand side of the model is the

(untransformed) dependent variable, while the right-hand side is a linear function

of the logarithm of the predictor(s). For example,

www.censusindia.gov.in
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Figure 7.4: Two Lin-Log Regression Functions
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Note: The slope is negative in Panel (a) and positive in Panel (b).

Equation 7.4: A Lin-Log Model

yi = β0 + β1 lnxi + εi

This model is particularly useful for modeling marginally declining rates. If

β1 < 0, then Y will decrease at a decreasing rate, producing a convex rela-

tionship (see Panel (a) of Figure 7.4). If β1 > 0, then Y will increase at a

decreasing rate, producing a concave relationship (see Panel (b) of Figure 7.4).

Marginally declining utility functions may, for example, be captured using a

lin-log specification.

The interpretation of β1 is the expected absolute change in the dependent

variable for a relative change in the predictor:

β1 =
∂y

∂x/x

(see Appendix C.4). For example, consider the model GNP = β0 + β1 ln M + ε,

where M is the money supply and GNP is measured in billions of dollars. Imagine
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that β̂1 = 1000. Then the interpretation is that a 1 percent increase in money

supply boosts GNP by 1000/100 = 10 billion.

7.3 Reciprocal Models

Reciprocal regression models come in different varieties. The simplest model,

however, is of the following form:

Equation 7.5: A Reciprocal Regression Model

yi = β0 +
β1

xi
+ εi

The model derives its name from the fact that the reciprocal of x is used on the

right-hand side. This allows us to put some curvature on the regression line,

but it also forces Y to be bound (by β0).3 Figure 7.5 shows two examples of the

reciprocal model. Panel (a) assumes β1 < 0 and results in bounding from above,

whereas panel (b) assumes β1 > 0 so that bounding is from below. A drawback

of the reciprocal model is that there is no straightforward interpretation of the

elasticities.

As an example, imagine that we believe there to be a reciprocal relationship

between per capita FDI and democracy on the African continent. We can model

this in R by invoking the following syntax:

f d i . f i t <− lm ( f d i p c ˜ I (1 /democ ) , data = a f r i c a )

You’ll notice a new element in the syntax: the symbol I. This protects the

integrity of the expression that follows in parentheses.4 The estimates are β̂0 =

−128.90 and β̂1 = 1112.80. Thus, the relationship looks like the one shown in

panel (b) of Figure 7.5, with a lower asymptote of -128.90. This means that

FDI tends to decrease with democracy.

3As x→∞, µ→ β0, assuming a finite β1.
4Without this, R would only read the 1 in 1/democ, which causes it to fit a constant only.

That is not what we want.
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Figure 7.5: Two Reciprocal Regression Functions
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Note: The slope is negative in Panel (a) and positive in Panel (b).

Parenthetically, we have now investigated two different models of the rela-

tionship between democracy and per capita FDI: a polynomial and a reciprocal

regression model. Which one is better? The corrected AIC for the polynomial

model was 659.325. For the reciprocal model, it is 658.329. Thus, the evi-

dence favors the reciprocal model, but only slightly: the Akaike weight for the

polynomial model is 0.38, whereas it is 0.62 for the reciprocal model.

7.4 Conclusions

In this chapter, we have discussed how the linear regression model can be spec-

ified so as to capture non-linear relationships. The principle that makes this

possible is that the linearity assumption in regression analysis references only

the parameters, not the predictors. By transforming the predictors and, on oc-

casion, the dependent variable, a wide variety of complex relationships can be

modeled. Here, we have approached these transformations from a theoretical

perspective. One can also approach this from an empirical perspective, a topic

that we shall discuss in Chapter X.



Chapter 8

Factors

The multiple regression model assumes that the dependent variable is continu-

ous. This follows from the assumption that the errors are normally distributed.

The model makes no assumptions about the measurement level (or, for that

matter, the distribution) of the predictors. Thus, the predictors can be continu-

ous in nature (interval and ratio scales), but they can also be discrete (nominal

and ordinal scales). From a statistical perspective, the measurement level of

the predictors is inconsequential.

From a substantive perspective, however, discrete predictors or factors create

problems with interpretation. To see this, consider again the literal interpreta-

tion of the partial slope coefficient: βk is the expected change in Y for a unit

change in xk, while holding all else equal. But what does a “unit change”

mean when the predictor is discrete? Since unit differences do not imply the

same distance for such variables—they are used solely to establish differences or

rank-orderings—it would seem strange to speak of a “unit change” in the first

place.

The ambiguities of interpreting the effects of factors necessitate a special

approach to incorporating them into the regression model. This approach hinges

on modeling effects as shifts in the intercept. The vehicle for creating those

shifts is to create a series of dummy variables, i.e., 0-1 or Boolean variables.

166
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8.1 Factors With Two Levels

8.1.1 Specification

The simplest case of a factor arises when it has two levels, i.e., two distinctive

values. To illustrate this scenario, consider once more the African data on per

capita FDI. We want to predict this variable based on two variables: per capita

GDP and regime status, i.e., whether the country is a democracy or not.1 The

latter variable is a factor with two levels: Non-Democratic and Democratic. Our

strategy is to transform this variable into the following dummy:

D =

{
1 if a democracy

0 if a non-democracy

The category that receives the value of 0 is known as the baseline category.

This serves as the reference point for the other category. We now estimate the

following model

FDIi = β0 + β1Di + β2GDPi + εi

Thus, instead of entering democratic status directly into the regression model,

we enter the dummy variable. Specified in this way, the model is known as the

analysis of covariance model. It can be estimated in the usual manner, using

OLS, maximum likelihood, or method of moments.

8.1.2 Interpretation

How do we interpret this model? The easiest approach is to write out the

conditional expectation function for democracies and non-democracies. The

conditional expectation function is

µi = β0 + β1Di + β2GDPi

1The distinction is based on the Economist Intelligence Unit’s cutoff of 6.00 on their
democracy score.
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Table 8.1: A Regression with a 2-Level Factor

Group CEF

Non-Democracies µi = β0 + β2GDPi
Democracies µi = (β0 + β1) + β2GDPi
Difference β1

Notes: CEF=conditional expectation func-
tion.

We can apply this equation to non-democracies by substituting 0 for D. This

yields µi = β0 +β1 ·0 +β2GDPi = β0 +β2GDPi. We can apply the conditional

expectation function to democracies by substituting 1 for D: µi = β0 +β1 · 1 +

β2GDPi = (β0 + β1) + β2GDPi (see Table 8.1). We see that the difference in

the population mean for a democracy and a non-democracy with the same per

capita GDP is equal to β1. This is a shift in the intercept. For non-democracies,

the intercept is β0; for democracies it is β0 + β1. The difference between these

intercepts is the democracy effect. If β1 < 0, then democracies are expected to

have a lower per capita FDI than non-democracies, all else equal. If β1 > 0, then

democracies are expected to have a higher per capita FDI than non-democracies,

again all else equal. Finally, β1 = 0 means that the expected per capita FDI is

identical for democracies and non-democracies, ceteris paribus.

The example illustrates why we call D = 0 the baseline category. This

category is absorbed into the intercept, which is commonly interpreted as the

baseline of the regression. The example also shows why we consider the effect

of factors in terms of shifts in the intercept. After all, β1 shifts where the

regression line crosses the y-axis.

Graphically, a shift in intercept implies that we obtain two parallel regression

lines (Figure 8.1). The lines are parallel since the slope coefficients associated

with per capita GDP are identical for democracies and non-democracies. The

distance between the lines depends on the size of the coefficient associated with

D. In our example, this is estimated at about -122.22 US dollars.
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Figure 8.1: Regime Status, GDP, and FDI in Africa
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Note: The intercept shift is $-122.22 when comparing democracies to non-democracies.

8.1.3 Implementation in R

R makes it extremely easy to incorporate factors into regression models. As

long as a predictor is declared as a factor, the creation of the dummy variable

is automatic.2 Here, R treats the first level as the baseline. All the user now

has to do is to provide the usual regression syntax. For example,

lm ( y ˜ f+x , data=o b j e c t )

runs a regression of y on the factor f and the covariate x using the data in

object.

The sample output is shown in Figure 8.2. The entry for (Intercept)

corresponds to β̂0 in our earlier specification

µi = β0 + β1Di + β2GDPi

2To check if the variable x is a factor, you can simply type is.factor(x). If the command
returns TRUE, then the variable is a factor.
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Figure 8.2: R Output With a Factor With Two Levels

Note: The entry regimeDemocratic corresponds to D in the regression specification shown
earlier.

The entry for regimeDemocratic corresponds to β̂2. Finally, the entry for

gdppc corresponds to β̂2.

When reporting regression results with factors, it is best to avoid cryptic

names such as D or regimeDemocratic. There exist several methods of labeling

dummy variables in regression tables:

• Use the name of the non-baseline category, e.g., democracy or democratic

regime.

• Use the name of the variable and indicate in parentheses what a value of

1 means. For example, regime type (1=democracy).

The second method is illustrated in Table 8.2; the first method will be illustrated

later in this chapter.

8.1.4 Hypothesis Testing

Testing for Group Differences In our example, we would like to know whether

the difference in intercepts between democratic and non-democratic regimes is

statistically significant. Under the null hypothesis H0 : β1 = 0, the difference

between the two regime types vanishes: the intercept is now β1 for both democ-

racies and non-democracies (take a look once more at Table 8.1). Thus, we
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Table 8.2: Reporting Factors in Published Research I

Dependent variable:

Per Capita FDI

Regime Type (1=Democracy) −122.22
(85.15)

Per Capita GDP 0.09∗∗∗

(0.01)

Constant −42.30
(47.74)

Observations 44
Adjusted R2 0.67

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

can establish whether statistically significant differences in per capita FDI exist

by testing β1 = 0.

The decision regarding the null hypothesis can be derived directly from the

output shown in Figure 8.2. Here, we see that the t-value for D is -1.435.

The associated p-value is 0.159 and exceeds any conventional Type-I error rate.

Thus, we fail to reject the null hypothesis and conclude that no statistically

significant differences exist between democracies and non-democracies in terms

of the expected level of FDI.

With an eye on factors with multiple levels, we could also have performed an

F-test, in the manner described in Chapter 5 and involving only regimeDemocratic.

This yields F = 2.1 and p = 0.16, so that we again fail to reject the null hypoth-

esis. Note that F = t2, which is always true when we test a single parameter.

Testing Intercepts A second question we would like to answer is whether the

intercept is significantly different from 0 at a particular level of the factor. In

our case, we may want to know if the intercept is significantly different from 0

for non-democracies. We may also want to know if is statistically significant for
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democracies.

To test the significance of the intercept for non-democracies, our baseline

category, is simple enough. All we need to do is to assess whether we can reject

H0 : β0 = 0. After all, β0 is the intercept for non-democracies (see Table 8.1).

Decisions about this null hypothesis can be based directly on the R output from

Figure 8.2. We observe that the t-test statistic associated with the intercept

is -0.886. The associated p-value is 0.381, which is way too large to reject

the null hypothesis. We conclude that the intercept for non-democracies is not

statistically significant at conventional levels, i.e., using conventional Type-I

error rates.

Testing the significance of the intercept for democracies is considerably more

complicated. The intercept here is equal to β0 + β1. We say that the intercept

is statistically significant if we can reject H0 : β0 + β1 = 0. We can test this

hypothesis using a t-test:

t =
β̂0 + β̂1

ŜE[β̂0 + β̂1]

Here,

ŜE[β̂0 + β̂1] =

√
V̂ar(β̂0) + V̂ar(β̂1 + 2Ĉov(β̂0, β̂1)

The ingredients for this test statistic are only partially found in the R output.

Computing the test statistic in this way can thus be quite cumbersome.

Equivalently, we can use the Wald test procedure outlined in Chapter 5.7.

Our null hypothesis may be written in the form of

Rβ = r

Specifically, let R = (1 1 0) and r = 0, then

(
1 1 0

) β0

β1

β2

 = 0
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Figure 8.3: Testing the Significance of the Intercept in Democracies

Note: Based on the regression results shown in Figure 8.2.

is identical to β0+β1 = 0. We can now use equation 5.11 to test this constraint.

The second approach is actually the easier one to implement in R. To do

this one needs the multcomp library:

l i b r a r y ( multcomp )

R <− matrix ( c ( 1 , 1 , 0 ) , nrow=1)

summary( g l h t (dem . f i t , l i n f c t = R) )

Here dem.fit is the regression object. The results are shown in Figure 8.3.

The column labeled “estimate” shows β̂0 + β̂1, which is -164.52. The column

labeled “Std. Error” shows ŜE[β̂0 + β̂1], which in our case is 80.17. The ratio

of these two quantities is the t-statistic, which is -2.052. The associated p-

value is 0.047. Thus, we would conclude that the intercept for democracies is

statistically significant at the .05-level: using a Type-I error rate of .05, we have

to reject the null hypothesis β0 + β1 = 0.

The result is a bit surprising. We showed that the intercept for non-

democracies is not significant. We also showed there is a non-significant differ-

ence between the intercepts of democracies and non-democracies. Yet, the in-

tercept for democracies is statistically significant. This can happen on occasion

and has to do with the fact that we combine the estimates of two parameters,

which are not independent from each other.
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Choosing the Baseline: Does It Matter?

At this point, you may wonder how much the results depend on which level

of the factor was designated as the baseline. We chose non-democracies, but

what would have happened had we chosen democracies? In this case, the sample

regression function would have been

F̂DIi = −164.52 + 122.22 · Non-Democracyi + 0.09 · GDPi

When we use non-democracies as the baseline, the sample regression function

is

F̂DIi = −42.30− 122.22 · Democracyi + 0.09 · GDPi

Let us compare these two equations. First, which level of regime type is

designated the baseline has no effect whatsoever on the estimate for per capita

GDP. Second, the magnitude of the coefficient associated with the non-baseline

category is the same across the two equations. The difference in the intercepts

for democracies and non-democracies is 122.22 in absolute value, regardless of

which level is used as the baseline. Third, the intercept changes across the two

setups. When democracies are the baseline, then the intercept is -164.52; when

non-democracies are the baseline, then the intercept is -42.30. This should be

the case because the intercept absorbs the baseline, which is different in the

two setups. However, if we reconstruct the intercept for the two regime types it

is identical across the two sample regression functions: -164.52 for democracies

and -42.30 for non-democracies. In sum, which level is designated the baseline

is without consequence.

8.2 Factors With More Than Two Levels

8.2.1 Specification

How do we proceed when a factor has more than two levels? In this case, we

create multiple dummy variables. Specifically, if the original factor has M levels,

then we create M − 1 dummy variables. The approach can be summarized in
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three steps.

1. Designate a Baseline: This is the level to which the other levels of the

factor will be compared. The effect of the baseline is absorbed into the

intercept. Which level is designated as the baseline is arbitrary. R uses

the first level for this purpose.

2. Generate Dummies for the Remaining Levels: Since the baseline already

has a parameter associated with it, namely β0, we should not introduce

a separate dummy for this level. The remaining M − 1 levels, however,

require their own dummy variables.

3. Estimate the Model: Estimate a regression model containing the M − 1

dummies and any covariates one wishes to include.

Note that R automates these steps for us as long as the variable of interest has

been declared as a factor.

As an example, consider again FDI in Africa. Certain organizations have

divided the African continent in investment regions. RisCura, for example,

employs the classification scheme shown in Table 8.3. This is based on the

investment risks and opportunities in different parts of Africa. We now wish to

include the region variable in our regression model along with GDP.3 Designating

Central Africa as the baseline, we would estimate the following model:

FDIi = β0 + β1EAi + β2ESi + β3FWAi + β4Mi + β5Ni +

β6OWAi + β7SA1i + β8SA2i + β9GDPi + εi

The terms EA, ES, FWA, M, N, OWA, SA1, and SA2 are all dummy variables.

They take on the value 1 if a particular country resides in a particular region

and 0 otherwise. For example, Burundi is part of East Africa. For Burundi,

then, EA is 1, whereas ES, FWA, M, N, OWA, SA1, and SA2 are all 0, since

it does not belong to those regions. As another example, Sierra Leone is part

of other West Africa. Hence it scores 1 on OWA and 0 on EA, ES, FWA, M,

3Parenthetically, we run the risk of over-fitting here because GDP may already have in-
formed the regional divisions in Table 8.3.
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Table 8.3: African Investment Regions

Code Region Abbreviation Countries

1 Central Africa CA Cameroon, Central African
Republic, Chad, Democratic Republic
of the Congo, Equatorial Guinea,
Gabon, Republic of the Congo

2 East Africa EA Burundi, Ethiopia, Kenya, Rwanda,
Tanzania, Uganda

3 Egypt & Sudan ES Egypt, Sudan
4 Francophone FWA Benin, Burkina Faso, Cape Verde,

West Africa Guinea, Ivory Coast, Mali, Niger,
Senegal

5 Maghreb M Algeria, Mauritania, Morocco,
Tunisia

6 Nigeria N Nigeria
7 Other West OWA Gambia, Ghana, Liberia, Sierra

Africa Leone
8 South Africa SA1 Lesotho, South Africa, Swaziland
9 Southern Africa SA2 Botswana, Comoros, Madagascar,

Malawi, Mauritius, Mozambique,
Namibia, Zambia, Zimbabwe

Notes: Based on RisCura.

N, SA1, and SA2. A country situated in the baseline group, i.e., East Africa,

scores 0 on all of the dummies.

The model can be estimated using OLS. In R one only has to include region

and GDP as predictors of FDI. As long as region has been declared as a factor,

R will set up the model as we have specified it here. The estimation results can

be found in Figure 8.4. Later, we shall discuss how this can be presented more

neatly in tabular form.

8.2.2 Why Cannot We Include M Dummies?

One question has not been answered until now. Why is it that we include

one fewer dummy variables than there are levels of the factor variable? Put

http://www.riscura.com/press/press-room/meaningful-african-markets-investment
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Figure 8.4: R Output With a Factor With Multiple Levels

Note: The entry regionEast Africa corresponds to EA in the regression specification shown
earlier. Likewise, regionEgypt & Sudan corresponds to ES, etc.

differently, why cannot we include M dummy variables?

The answer lies in Assumption 4.1, namely that the matrix of predictors X

has to be full rank. This cannot be true if we include both a constant and

M dummy variables. To see this consider the following fragment of X, which

shows data from nine countries from an equal number of regions:

X =



Const CA EA ES FWA M N OWA SA1 SA2 GDP

1 1 0 0 0 0 0 0 0 0 1219.93

1 0 1 0 0 0 0 0 0 0 251.01

1 0 0 1 0 0 0 0 0 0 3256.02

1 0 0 0 1 0 0 0 0 0 750.51

1 0 0 0 0 1 0 0 0 0 9813.92

1 0 0 0 0 0 1 0 0 0 2742.22

1 0 0 0 0 0 0 1 0 0 509.39

1 0 0 0 0 0 0 0 1 0 1134.85

1 0 0 0 0 0 0 0 0 1 7254.56



Here Const is the constant and CA is a newly formed dummy that takes on the

value 1 for Central African countries and 0 elsewhere. If we now consider the

first 10 columns, we see that

Const = CA+ EA+ ES + FWA+M +N +OWA+ SA1 + SA2

We have a linear dependency between the constant and the 9 regional dummies

we have created, i.e., we have perfect multicollinearity. The existence of such

collinearity means that X cannot be full-rank.

To solve the problems we can pursue two strategies. Either we drop the
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constant and create M dummy variables or we drop one of the dummies, for

example, CA. In practice, the second strategy is far more common. This is the

one we shall pursue throughout this book.

8.2.3 Interpretation

How do we interpret the results from Figure 8.4? It is easiest to do this by

developing scenarios for each of the regions. Take for example Cameroon, which

is located in Central Africa. For this country, we may substitute 0s for all of the

dummy variables, so that the conditional expectation function is:

µi = β0 + β1EAi + β2ESi + β3FWAi + β4Mi + β5Ni +

β6OWAi + β7SA1i + β8SA2i + β9GDPi

= β0 + β1 · 0 + β2 · 0 + β3 · 0 + β4 · 0 + β5 · 0 +

β6 · 0 + β7 · 0 + β8 · 0 + β9GDPi

= β0 + β9GDPi

Now consider, for example, Lesotho. This country is located in the South

Africa region so that SA1 equals 1 and all of the other dummy variables are 0.

Substitution in the conditional expectation function now yields:

µi = β0 + β1EAi + β2ESi + β3FWAi + β4Mi + β5Ni +

β6OWAi + β7SA1i + β8SA2i + β9GDPi

= β0 + β1 · 0 + β2 · 0 + β3 · 0 + β4 · 0 + β5 · 0 +

β6 · 0 + β7 · 1 + β8 · 0 + β9GDPi

= β0 + β7 + β9GDPi

If we repeat this process for all of the regions, then we obtain the results

shown in Table 8.4. We observe again that the effect of per capita GDP remains

constant across the regions. The intercepts, however, move around. For exam-

ple, the estimated intercept for Central Africa is 76.00, whereas it is -267.47 in

South Africa. The shifts in intercepts are visualized in Figure 8.5.
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When we inspect Table 8.4, then we observe the following:

Coefficient Intercept difference between

β1 East and Central Africa

β2 Egypt/Sudan and Central Africa

β3 Francophone West and Central Africa

β4 Maghreb and Central Africa

β5 Nigeria and Central Africa

β6 Other Western and Central Africa

β7 South and Central Africa

β8 Southern and Central Africa

Thus, the coefficients β1 through β8 measure differences in the intercept be-

tween non-baseline levels and the baseline. In this light, the estimates from

Figure 8.4 suggest that, for example, the intercept in South African countries is

-343.47 points (or dollars) lower than the intercept for Central African countries.

Put differently, holding per capita GDP constant, we predict per capita FDI to

be 343.47 dollars less in Southern than in Central African countries.

Less obvious from Table 8.4 are the differences between non-baseline levels.

However, they can be easily derived from the table. Imagine, for example, that

we wish to compare the intercepts for countries in South and Southern Africa.

From table 8.4, we know that the conditional expectation function for South

African countries is µ = β0 +β7 +β9GDP. For Southern African countries, this

equation is µ = β0 + β8 + β9GDP. If we now assume that per capita GDP is

the same across countries from each region, then

∆µ = µ|SA2− µ|SA1

= (β0 + β8 + β9GDP)−

(β0 + β7 + β9GDP)

= β8 − β7

where µ|SA2 is the conditional expectation function given that the country

is located in Southern Africa and a similar meaning adheres to µ|SA1. The
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Figure 8.5: Region, GDP, and FDI in Africa
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Note: Notice the intercept shifts across the regions.

quantity β8 − β7 is is a difference in intercepts. When GDP is assumed to

remain constant, it can be interpreted as the discrepancy in the FDI expect

between Southern and South African countries. Based on the results from

Figure 8.4, our estimate of this discrepancy is −166.92− (−343.47)) = 176.55:

holding GDP constant, we expect per capita FDI to be 176.55 dollars higher in

Southern than in South African countries. Obviously, other differences can be

derived and interpreted analogously.

8.2.4 Hypothesis Testing

Testing for Group Differences Across the Board With M -level factors, the

very first hypothesis to test is the null hypothesis that there are no differences

across any of the levels. The null hypothesis implies that the coefficients asso-

ciated with the M − 1 dummy variables are all equal to 0. In this case, there is

a common intercept that applies to all levels of the factor.

In our example, we can formulate H0 : β1 = β2 = β3 = β4 = β5 =

β6 = β7 = β8 = 0. Under this hypothesis, the conditional expectation function
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for each and every region of Africa reduces to µi = β0 + β9GDPi. It is easily

verified this is the case by substituting the hypothesized values of the coefficients

associated with the dummies in the conditional expectation functions shown in

the second column of Table 8.4. We can test the null hypothesis with the F-

test approach outlined in Chapter 5. When we use the wald.test or waldtest

function in R we obtain the following result: F = 0.86 and p = 0.56 (based on

the F [8, 34] distribution). The conclusion is clear: the null hypothesis cannot

be rejected and we may proceed with a model with a single intercept for all

African regions.

Normally speaking, we would end our explorations of regional differences in

Africa at this point, at least with the current operationalization of regions. For

the sake of completeness, we shall proceed with the next step, which is to look

at more specific differences.

Testing for Specific Group Differences Imagine we could have rejected the

null hypothesis. This does not mean that all intercepts are different from each

other. We know, however, that at least some are different from each other in

the population. If we want to explore which ones, then we need to look into

comparisons between specific levels of the factor.

Comparisons with the baseline are the easiest. Imagine that we want to

know if the intercept in South Africa is different from Central Africa. This

amounts to testing H0 : β7 = 0. If we fail to reject this hypothesis, then the

conditional expectation functions for the two regions are indistinguishable (see

once more Table 8.4). All the information for this hypothesis test is provided in

the R output shown in Figure 8.4. If we go to the entry regionSouth Africa,

which corresponds to β7, we find t = −1.987 and p = 0.055. Assuming a

Type-I error rate of 0.10, we would be inclined to reject the null hypothesis and

say that the intercept in the region of South Africa is different than that of

Central Africa. Momentarily, we shall revisit this conclusion, but for now it is

important to understand simply how we derived the relevant information from

the R output.

Comparisons between two non-baseline values are more complicated. Let us

revisit the comparison between the Southern and South African regions. Earlier,
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we saw that the difference in the intercepts is equal to β8 − β7. If we want to

say that this difference is statistically significant at some level, then we need to

be able to reject H0 : β8 − β7 = 0 at that level. If we fail to reject the null

hypothesis, then we have to assume that β8 − β7 = 0, which is the same as

saying β7 = β8, i.e., the two intercepts are the same.

We can test this hypothesis using the multcomp library. We once more use

the linear equation Rβ = r. In this case, we define r = 0 and

R =
(

0 0 0 0 0 0 0 −1 1 0
)

The R syntax is now

l i b r a r y ( multcomp )

R <− matrix ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , −1, 1 , 0 ) , nrow=1)

summary( g l h t ( r e g i o n . f i t , l i n f c t = R) )

Here region.fit is the regression object that we created. We find an estimate

of β8 − β7 of 176.6 with a standard error of 166.4. This yields t = 1.061 and

p = 0.296. Thus, we fail to reject the null hypothesis and conclude that the

intercepts for the two regions are indistinguishable in the population.

The multcomp library offers an easy way of creating all possible comparisons

between African regions. Before we embark on this subject, however, we need

to revisit the Type-I error rate when we conduct many different tests. With

9 regions, it is possible to perform .5 · 9 · (9 − 1) = 36 comparisons.4 Each

involves a null hypothesis that we test. The problem with testing this many null

hypotheses is that the actual Type-I error will exceed the nominal Type-I error,

α, sometimes by a lot. The nominal Type-I error rate is what we think we have

set, say 0.10 or 0.05. The actual, or what is known as the familywise, Type-I

error rate refers to a set (family) of inferences. It is defined as the probability

of making at least one Type-I error in the family. This probability is given by

1−(1−α)q, where q is the number of inferences in the family. Figure 8.6 shows

the familywise error rate for different values of α and q. The take home message

4In general, with M factor levels we can make .5M(M − 1) comparisons.
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Figure 8.6: Familywise Error Rates
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of this figure is that, with many comparisons, it becomes quickly improbable

not to reject null hypotheses incorrectly and to conclude erroneously that a

significant difference in intercepts exists.

Most statisticians would argue that we need to take some precaution to

avoid ridiculously high familywise error rates. There is no real consensus on

the nature of this precaution and it would lead us too far astray to discuss all

of the many possibilities. I discuss here the Holm-Bonferroni procedure, which

is a more powerful variant of the Bonferroni adjustment (Holm, 1979). The

Bonferroni adjustment simply consists of dividing the nominal Type-I error rate

by the number of comparisons, i.e., α/q. This is often too conservative in that

it fails to reject the null hypothesis even when it is false. In Holm-Bonferroni, we

apply the adjustment sequentially, starting with the comparison whose p-value

is the smallest. This can be shown to improve the statistical power of the test

considerably.

If this all sounds extremely complicated, do not despair. R’s multcomp
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library will automate the process for us. The syntax is

l i b r a r y ( multcomp )

r e g i o n . ht <− g l h t ( r e g i o n . f i t ,

l i n f c t =mcp( r e g i o n=”Tukey” ) )

summary( r e g i o n . ht , t e s t=a d j u s t e d ( ” holm ” ) )

The second and third lines invoke the multiple comparison procedure (mcp) for

the variable region. The option Tukey means that we seek to make all possible

comparisons between intercepts.5 The fourth line results in the adjustment of

the p-values according to the Holm-Bonferroni procedure.

The results are shown in Figure 8.7. Looking at the last column, we observe

that the adjusted p-values are uniformly 1 for all of the 36 comparisons we are

making. This means that not a single pair of regions displays a statistically

significant difference in the intercept, a finding that is entirely consistent with

the F -test shown earlier. Also note that the standard R regression output, shown

in Figure 8.4, shows a limited number of comparisons, to wit those involving

the baseline. The p-values reported in this output have not been adjusted.

Consequently, I would not rely on these too much and prefer using p-values that

have been corrected for multiple comparisons.

Testing Intercepts One topic in the discussion of regression results remains:

hypothesis tests of region-specific intercepts. This is easiest for the baseline. If

we want to know if the intercept is statistically significant for Central Africa,

then all we need to do is to consult the regression output from Figure 8.4. We

see that the t-statistic for the intercept is quite small, at 0.684. With a p-value

of 0.499 we fail to reject H0 : β0 = 0; the intercept in Central Africa is not

significantly different from 0.

Since we have already shown that the intercepts of the remaining regions

do not differ significantly from the intercept in Central Africa, we could end

the process of testing intercepts here. If we want to continue, then we proceed

5Technically speaking, the option means that we compare all means. This is actually what
we do when we compare the conditional expectation functions, as long as we assume that per
capita GDP is always the same.
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Figure 8.7: Multiple Comparisons Across African Regions

Note: The p-values have been adjusted using Holm-Bonferroni.
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similarly to the two-level case. For example, if we want to look at the intercept

in Southern Africa, then Table 8.4 tells us that this is β0 + β8. The intercept

is significantly different from 0 if we can reject H0 : β0 + β8 = 0. Relying once

more on the equation Rβ = r, we can set r = 0 and R = (1 0 0 0 0 0 0 0 1 0);

this yields β0 + β8 = 0. We can now use R’s multcomp library:

l i b r a r y ( multcomp )

R <− matrix ( c ( 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 ) , nrow=1)

summary( g l h t ( r e g i o n . f i t , l i n f c t =R) )

We obtain an estimate of -90.92 (cf. Table 8.4) with an estimated standard

error of 88.57. The t-statistic is -1.026 and yields p = 0.312. Hence, we fail to

reject the null hypothesis and conclude that the intercept for Southern Africa

is not reliably different from 0.

8.2.5 Reporting Regressions with Factors

In this section, we have discussed a large many topics. How would one normally

report the many statistical results and tests that have made their appearance?

Let us start with the regression output. In Table 8.2, I showed one way of

formatting this output. Now let us consider a second way, which is shown in

Table 8.5. Here the factor levels are indicated by their proper names, with

the exception of the baseline, which is captured through the constant. Any

regression analysis involving a M -level factor should at least show the regression

estimates so that a table like Table 8.5 is indispensable.

What should also be reported is the F-test across the factor levels. One could

do this in the note below the table, but I would personally opt for inclusion in

the text so that it does not elude the reader. For example, I might write the

following:
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Table 8.5: Reporting Factors in Published Research II

Dependent variable:

Per Capita FDI

East Africa −112.33
(148.26)

Egypt and Sudan −238.53
(202.49)

Francophone West Africa −125.45
(137.37)

Maghreb −292.11∗

(156.62)

Nigeria −267.48
(268.07)

Other West Africa −61.51
(164.20)

South Africa −343.47∗

(172.88)

Southern Africa −166.92
(128.67)

Per Capita GDP 0.09∗∗∗

(0.01)

Constant 76.00
(111.11)

Observations 44
Adjusted R2 0.65

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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We fail to reject the null hypothesis that there are no differences

across the regions after controlling for per capita GDP: F [8, 34] =

0.86, ns.

Here, the symbol ns stands for “not significant.” Note that it is important

to report the degrees of freedom associated with the F-test statistic. Had the

F-test been significant then we would have indicated this in lieu of ns. For

example, one might write p < .05 if the p-value is less than .05; this tells the

reader that the test is significant at the .05-level (and hence also at the .10-level,

but not at the .01-level).

Other results that we have discussed should be discussed only in as far as

they are important for the theoretical argument. If specific regional differences

are important, for example, one can discuss those in the text. For example, if

the difference between Nigeria and Egypt/Sudan is particularly important, then

I might write:

There does not appear to be a statistically significant difference

between Nigeria and Egypt/Sudan: t[34] = −0.095, ns.

If many comparisons are important, then it might prove useful to include them

in a table. At that point, it also becomes important to provide details about

the manner in which the p-values have been adjusted.

8.3 Multiple Factors in a Regression Model

So far, we have focused on regression models that include a single factor. How-

ever, one can easily combine factors in a single regression model. The only thing

that is affected by this is the interpretation.

To determine our thoughts, imagine that we seek to predict per capita FDI

with per capita GDP and two factors. The first of these factors is the dis-

tinction between democracies and non-democracies that we used earlier. The

second factor distinguishes Sub-Saharan Africa from North Africa. As per the

United Nations Statistics division, we assume that Algeria, Egypt, Libya, Mo-

rocco, Sudan, and Tunisia belong to North Africa; all other countries belong to
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Table 8.6: A Regression with a Two Factors

Group Sub Dem CEF

North-African non-democracies 0 0 µi = β0 + β3GDPi
North-African democracies 0 1 µi = β0 + β2 + β3GDPi
Sub-Saharan non-democracies 1 0 µi = β0 + β1 + β3GDPi
Sub-Saharan democracies 1 1 µi = β0 + β1 + β2 + β3GDPi

Notes: CEF=conditional expectation function.

Sub-Saharan Africa. We now formulate the following conditional expectation

function:

µi = β0 + β1Subi + β2Demi + β3GDPi

Here Sub is a dummy that takes on the value 1 if the country is located in

Sub-Saharan Africa and 0 otherwise. Similarly, Dem takes on the value 1 if a

country is democratic and 0 otherwise. We can estimate this model in the usual

manner.

For the interpretation it is once more useful to consider different groupings

of the cases, as we have done in Table 8.6. For example, the equation for North-

African non-democracies is obtained by substituting a 0 for both Sub and Dem

in the conditional expectation function. Similarly, the equation for Sub-Saharan

democracies comes about by substituting a 1 for Sub and a 1 for Dem.

We now see that the intercept, β0, applies to a particular intersection of

the two factors, namely between North-African countries and non-democracies.

It should be interpreted as such. This is different from what we had before:

where β0 applied to just one baseline in the discussion so far, it now covers the

combination of two baselines.

For purposes of interpretation, let us also consider the effect of being a

democracy. For the North-African countries, the shift in intercept that is

attributable to being a democracy is β2. We know this because the inter-

cept for North-African democracies is β0 + β2, whereas it is β0 for North-

African non-democracies. Moving to Sub-Saharan Africa, we see that the
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shift in the intercept that is attributable to being a democracy is again β2:

(β0 + β1 + β2)− (β0 + β1) = β2. Hence, β2 can be interpreted unambiguously

as the effect of being a democracy.

In a similar vein, we can consider the effect of being in the Sub-Sahara. In

non-democracies, the shift attributable to being a Sub-Saharan country is β1.

After all, the intercept in Sub-Saharan non-democracies is β0 + β1, whereas

it is β0 in North-African non-democracies. The same difference obtains for

democracies: (β0 + β1 + β2)− (β0 + β2) = β1. Hence, β1 is the effect of being

in Sub-Saharan Africa.

We see that the interpretation becomes a bit more complex when we have

multiple factors because there are now combinations of those factors that we

have to consider. However, as long as you apply a strategy like the one shown

in Table 8.6, there is not much room for confusion.

8.4 When To Use Dummy Variables

Many predictors in the social sciences are factors. For example, when we use

a feeling thermometer to predict a political attitude, then that predictor is not

really continuous. Rather, thermometer scores are typically recorded from 0 to

100, in steps of 1. Does this mean that we should create 100 dummy variables

to absorb the effect of the feeling thermometer? The answer is no.

We use dummy variables to avoid making a questionable assumption that

the levels of a factor are equal interval (i.e., equidistant). However, as the

number of levels increases, this assumption becomes less and less worrisome.

The intervals between adjacent levels become ever smaller and in the limit they

converge to a common size of 0 (if the number of levels goes to infinity). Not

only is it unnecessary to use dummies under these circumstances, it may in fact

be ill-advised. If we enter the feeling thermometer as a covariate, we need to

estimate only one parameter. If we enter it through a dummy specification,

then we suddenly need 100 parameters. This consumes many more degrees of

freedom, inflates standard errors, and generally makes interpretation way too

difficult.

So when should we use dummy variables? There are two situations were we
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cannot avoid them.

1. Nominal Predictors: If a predictor is measured on a nominal scale, then

it should be entered into the regression model through a series of dummy

variables. This is true even when the number of levels is large. Thus,

predictors such as region, gender, race, and country should always be

“dummied up.”

2. Ordinal Predictors with Few Categories: If a predictor is measured on

an ordinal scale and this scale is crude, i.e., has few categories, then

the predictor should probably be entered as a set of dummies. Practice

here is less consistent. Some scholars never use dummy variables for

ordinal predictors, while others uses dummies when the number of levels

falls short of some threshold. There is no consensus on what the size of

this threshold is. Some set it at 5, others at 7, and still others at 10.

Personally, I use a cutoff of 7 levels, although this is no more than a rule

of thumb.

8.5 Conclusions

Once we recognize that the linear regression model makes no assumptions what-

soever about the measurement level of the predictors, its versatility is even more

obvious. Still, it behooves us to treat factors different from covariates. We do

this not because of some statistical rationale but only to avoid problematic in-

terpretations. This chapter has shown how one can use dummy variables to

aid with the interpretation of factors. In the next chapter, we shall continue

our discussion of dummy variables, showing how they can be used to expand

regression analysis to allow for heterogeneous effects.



Chapter 9

Interaction Effects

A moderator is a variable that influences the relationship between two other

variables, specifically, that between a predictor and the dependent variable (see

Figure 9.1). By bringing moderators into the regression model, we can engage

in condition-seeking (Greenwald et al., 1986). This means that we can ascertain

under what conditions, i.e., values of the moderator, the relationship between

a predictor and dependent variable exists, reverses signs, or gains in strength.

The vehicle that allows us to engage in condition-seeking is the interaction.

This is simply the product of a moderator and a predictor variable. It allows us

to capture the impact of a particular combination of values of the predictor and

the moderator that goes over and beyond their additive effects. In this sense,

interactions allow us to model non-additive relationships.

In this section, we discuss different types of interactions and their interpre-

tations. We discuss some useful applications of interactions and address some

pitfalls.

9.1 Interactions Between Factors

Let us return to our models explaining per capita FDI in Africa. Imagine that

we have at our disposal a continuous indicator of democracy, which we include

only as a linear term to keep things simple. Further, we have crude indicators

of wealth and trade openness. Specifically, in terms of wealth we only know

193



194 CHAPTER 9. INTERACTION EFFECTS

Figure 9.1: The Role of a Moderator Variable

X Y

Z

Note: Z is the moderator variable. When Z has a direct effect on Y (dashed line) we call it
a quasi-moderator. When this effect is absent, then Z is a pure moderator.

whether a country’s per capita GDP is above or below the African median. If it

is above, we say that the country is rich; otherwise we say it is poor. For trade

openness, we also only know whether a country is above or below the African

median. If it is above, we say that the country’s economy is open; otherwise,

we say it is closed. The model so far is typical of the models that we discussed

in the previous chapter. It may be written as

FDIi = β0 + β1Openi + β2Richi + β3Democi + εi,

where Rich and Open are two dummy variables. But now we add the wrinkle

that the effect of openness varies depending on a country’s wealth. For example,

we may believe that openness matters the most to potential investors when the

country is rich. How would we capture this in a regression model?

9.1.1 The Interaction Term

The answer to the previous question is that we create the multiplicative term

Rich × Open and add this to the regression model:

FDIi = β0 + β1Openi + β2Richi + β3Democi +

β4Richi × Openi + εi
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We call this multiplicative term the interaction. The constituent terms, Open

and Rich, are known as the statistical main effects.

Where does the multiplicative term come from? To answer this question

let us revisit the model without interactions. In this model, we argued that the

effect of openness may vary with wealth. Let us focus on the first part of this

theoretical expectation, i.e., the effect of openness varies. We can capture this

by writing

FDIi = β0 + α1iOpeni + β2Richi + β3Democi + εi

This model is identical to the original model, except that I have added a subscript

i to the parameter for trade openness: β1 has become α1i. Adding the subscript

implies that the effect of openness varies across countries. In other words, the

parameter for openness has become a variable.

Like any other variable, α1i can be modeled. Our theoretical expectation is

that variation in the effect of openness can be accounted for through country

wealth. This suggests the following model:

αi1 = β1 + β4Richi

This is a regression equation, except that the left-hand side is not your usual

variable and the right-hand side does not include an error term.1

We can now take the model for αi1 and substitute it into the equation for

FDI:

FDIi = β0 + (β1 + β4Richi) Openi + β2Richi +

β3Democi + εi

= β0 + β1Openi + β2Richi + β3Democi +

β4Richi × Openi + εi

This model can be estimated quite simply using OLS. As we shall see in the

1The error term would not be identified, which means that we do not have sufficient
information to estimate its characteristics (e.g., variance).
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next section, R makes this especially straightforward.

9.1.2 Using R

The model that we specified can be estimated quite easily in R. The key is that

we specify the variables Rich and Open as factors. Beyond that, the following

syntax suffices:

lm ( f d i p c ˜ r i c h ∗open+democ , data=a f r i c a )

The multiplication sign between the two dummies causes R to create the inter-

action term. In addition, the two main effects for the dummies are included in

the model. The estimation results can be seen in Table 9.1.

9.1.3 Interpretation

Now that we have seen the derivation and estimation of a model involving an

interaction between two factors, how do we go about interpretation? It is easiest

to characterize the conditional expectation function at different values of the

factors and then draw comparisons. The necessary computations are shown

in Table 9.2. For example, the CEF for rich, open economies is obtained by

substituting ones for Rich and Open:

µi = β0 + β1 · 1 + β2 · 1 + β3Democi + β4 · 1× 1

= β0 + β1 + β2 + β4 + β3Democi

We can now look at the effect of trade openness in poor and in rich countries.

Holding the level of democracy constant, the difference in the CEFs of open and

closed poor economies is

(β0 + β1 + β3Democi)− (β0 + β3Democi) = β1

The same difference for rich economies is

(β0 + β1 + β4 + β3Democi)− (β0 + β2 + β3Democi) = β1 + β4



9.1. INTERACTIONS BETWEEN FACTORS 197

Table 9.1: Example of an Interaction Between Two Factors

Dependent variable:

Per Capita FDI

Rich 21.87
(176.40)

Open −27.91
(177.07)

Democracy −76.67∗∗

(36.05)

Rich × Open 440.37∗

(253.60)

Constant 359.09∗

(180.84)

Observations 44
Adjusted R2 0.17

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9.2: The Interpretation of Dummy Interactions

Group Open Rich CEF

Poor closed economies 0 0 µi = β0 + β3Democi
Rich closed economies 0 1 µi = β0 + β2 + β3Democi
Poor open economies 1 0 µi = β0 + β1 + β3Democi
Rich open economies 1 1 µi = β0 + β1 + β2 + β4 + β3Democi

Notes: CEF = conditional expectation function.

The difference in the differences is thus

(β1 + β4)− β1 = β4

Let us now bring in the estimates from Table 9.1. The estimate associated

with trade openness is -27.91; this is β̂1. This is not the effect of openness

in general. Instead, it is the effect of openness for poor African economies.

The estimate associated with the interaction is 440.37; this is β̂4. This is the

difference in the effect of openness for rich and poor countries: the effect of

openness is 440.37 points (in this case, U.S. dollars) higher in rich than in poor

countries. This means that the effect of openness in rich countries is equal to

−27.91 + 440.37 = 412.46; this is β̂1 + β̂4.

The complete set of results is depicted in Figure 9.2. Here, we have drawn

the regression line for democracy and per capita FDI for different combinations

of wealth and trade openness. The big jump in the intercept that arises for rich,

open economies is due to the large interaction.

9.1.4 Hypothesis Testing

Several hypotheses can be tested for the model with factor interactions. First,

we can test if there is a non-zero interaction effect. Next, we can test the

intercepts for different combinations of wealth and openness. Finally, we can

test for differences between the intercepts.

Testing the Interaction Imagine that β4 = 0. Then Table 9.2 would show

that the effect of trade openness is β1, regardless of whether a country is rich
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Figure 9.2: Democracy, Wealth, Trade Openness and FDI
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or poor. In other words, we now obtain the same effect of openness across all

countries. There is no interaction, i.e., the effect of openness is not moderated

by wealth.

Establishing that there is a moderator effect from wealth thus amounts to

testing and rejecting H0 : β4 = 0. The test is a simple t-test of the partial

slope associated with the interaction term. Consulting Table 9.1, we see that

this test yields p < .10. The conclusion now depends on the Type-I error rate

that one has set. If this is .05, then we would have to conclude that we fail to

reject H0; there is no evidence of an interaction between wealth and openness.

If the Type-I error rate was set at .10, which makes sense for a sample this

small, then we would reject H0 and conclude there is an interaction effect.2

Testing Intercepts Testing intercepts in a model with interacting dummy

variables is no different than what we described for factor variables in the pre-

vious chapter. For instance, consider the question of whether the intercept for

rich, open economies is statistically different from 0. This amounts to testing

H0 : β0 + β1 + β2 + β4 = 0. We can use the multcomp procedure in R to

accomplish this task. In our case, we obtain β̂0 + β̂1 + β̂2 + β̂4 = 793.4. This

has a standard error of 211.7. Consequently, the test statistic under the null

hypothesis is 3.75. When referred to a t-distribution, we obtain p = 0.001.

Hence, we reject the null hypothesis and conclude that the intercept for rich,

open economies is significantly different from 0.

Testing Differences Between Intercepts The same procedure may be used

to test differences between intercepts. For example, we may wish to ascertain

whether FDI is different for open and closed economies when the countries

involved are wealthy. We have seen that the difference is β1+β4. The multcomp

procedure shows an estimate of 412.5, which is statistically significant at the

.05-level. Thus, we can reject the null hypothesis that there is no difference

between open and closed wealthy economies in terms of the expected level of

FDI.

2The reason to increase the Type-I error rate is to obtain reasonable statistical power despite
having few observations.
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9.1.5 Interaction Effects are Symmetric

In the discussion so far, we have assumed that wealth moderates the effect

of trade openness. But could we turn this around and argue that openness

moderates the effect of wealth? The answer is yes and to see this we consider

again the breakdown from Table 9.2. Considering closed economies (and hold-

ing democracy constant) the difference in the conditional expectation function

due to wealth is β2. Repeating this computation for open economies, we obtain

β2 + β4. The difference in these effects is β4, i.e., the regression coefficient

that is associated with the interaction term. Thus, the interaction effect can-

not distinguish between the moderating effect of openness on wealth and the

moderating effect of wealth on openness. This is what we mean when we say

that the interaction is symmetric.

9.2 Interactions Between Factors and Covariates

In addition to building interactions between factors, it is possible to construct

such terms between factors and covariates. TO illustrate this, let us revisit the

FDI model from the previous section. This time, however, per capita GDP is

measured on a continuous scale. As such, we treat it as a covariate. We assume

that the effect of this covariate depends on trade openness, which we continue

to treat as a factor. Thus, the model that we propose is the following:

FDIi = β0 + β1Openi + β2GDPi + β3Democi +

β4Openi × GDPi + εi

This model can be estimated using OLS. The estimation results are shown in

Table 9.3.

9.2.1 Interpretation

How do we interpret this regression model? It is easiest to do this by deriving

the simple slope equation. This shows the marginal effect of a predictor, in

this case GDP, at different values of the moderator, in this case trade openness.
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Table 9.3: Example of an Interaction Between a Factor and a Covariate

Dependent variable:

Per Capita FDI

Democracy −40.87∗∗

(17.21)

GDP per capita 0.01
(0.02)

Open Economy −94.69
(72.20)

Open Economy × GDP 0.09∗∗∗

(0.02)

Constant 195.36∗∗

(84.32)

Observations 44
Adjusted R2 0.80

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Consider the model µ = β1x + β2z + β3x × z + x>o β, where xo includes the

constant and any predictors other than X and Z. Then mathematically, the

simple slopes are

Equation 9.1: Simple Slope

∂µ

∂x
= β1 + β3z

∂µ

∂z
= β2 + β3x

Note that we have two simple slope equations due to the symmetry of the

interaction, which allows us to treat Z as the moderator of X and vice versa.

In our case, the simple slope for GDP is given by

∂µ

∂GDP
= β2 + β4Open

In a closed economy, Open is equal to 0 so that the simple slope equation may

be written as β2 + β4 · 0 = β2. In an open economy, Open is equal to 1 so that

the simple slope equation may be written as β2 + β4 · 1 = β2 + β4 (see Table

9.4). Thus, β4 gives the difference in the GDP slope for open as compared to

closed economies.

The implication of this analysis is that β2 should not be interpreted as the

unconditional effect of GDP. In fact, it is a conditional effect, namely the effect

of GDP provided that the economy is closed. To arrive at the effect of GDP

when the economy is open, we have to add β4 to β2.

Another implication is that we now obtain non-parallel regression lines for

Table 9.4: Simple Slope Equations

Economy Equation Estimate

Closed β2 0.01
Open β2 + β4 195.37

Notes: Estimates based on Ta-
ble 9.3.
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Figure 9.3: Simple Slopes for GDP by Trade Openness
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Note: Based on the estimates from Table 9.3. Confidence intervals have been omitted.

GDP, as is illustrated in Figure 9.3. For closed economies, the simple slope is

much shallower than it is for open economies. This means that the effect of

GDP on FDI is much stronger in open than in closed economies.

The pattern that we observe in Figure 9.3 is an example of a so-called ordinal

interaction. In these interactions, the magnitude of the simple slope changes

but the direction remains always the same. In Figure 9.3, the simple slope for

GDP is always positive. What changes is the magnitude of this slope. It is also

possible to obtain a so-called dis-ordinal interaction. In those interactions, the

distinguishing characteristic is that the direction of the simple slope changes

across values of the moderator. (The magnitude may change as well.) The

distinction is illustrated in Figure 9.4.

When looking at the right-hand panel of Figure 9.4, it becomes apparent why

it may be crucial to engage in condition-seeking. If we were to run a regression

on X alone, we would conclude that there is no effect of this predictor because
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Figure 9.4: Ordinal and Dis-Ordinal Interactions
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the red and blue lines cancel each other. However, this conclusion would be

erroneous because, in fact, there are clear effects of X in each of the sub-groups

formed by the moderator. In one sub-group, the effect is positive and in the

other it is negative. How X plays into the dependent variable, then, depends

on the specific conditions described by the moderator variable.

9.2.2 Hypothesis Testing

The first order of business is to check if the interaction between the factor and

covariate is statistically significant. Next, one can check the extent to which

the simple slopes are statistically different from zero.

Testing the Interaction We have seen that β4 constitutes the difference in

the simple slope of GDP in open versus closed economies. Hence, the null

hypothesis β4 = 0 implies that the effect of GDP does not depend on trade

openness—there is no interaction. It is simple to test this hypothesis. All we

have to do is look at the t-statistic that is associated with the interaction. This

is 4.535 and the p-value is 0.000. Thus, we can confidently conclude that the

interaction is statistically significant; the effect of GDP is moderated by trade

openness.

Testing the significance of an interaction is not always this straightforward.

Imagine, for example, that we argue that the effect of GDP varies by region. If
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we omit all other predictors and use the regional division that we introduced in

Chapter 8, then the conditional expectation function is3

µi = β0 + β1EAi + β2ESi + β3FWAi + β4Mi + β5OWAi +

β6SA1i + β7SA2i + β8GDPi + β9EAi × GDPi +

β10ESi × GDPi + β11FWAi × GDPi + β12Mi × GDPi +

β13OWAi × GDPi + β14SA1i × GDPi + β15SA2i × GDPi

The simple slope equation for GDP is now

∂µi
∂GDPi

= β8 + β9EAi + β10ESi + β11FWAi + β12Mi + β13OWAi +

β14SA1i + β15SA2i

This reduces to a constant effect of β8 if and only if β9 = β10 = β11 = β12 =

β13 = β14 = β15 = 0. If we state this as the null hypothesis, then we should use

a Wald test to test it. In this case, we obtain F = 1.2, which yields p = 0.34.

Thus, we conclude that the effect of GDP is not moderated by region.

Testing the Significance of a Simple Slope Figure 9.3 shows the partial

slopes for GDP by trade openness. We may ask for each of these slopes whether

it is statistically significant. For closed economies, this question can be answered

quite easily. In this case, the simple slope for GDP is simply β2 (see Table 9.4).

We can pose H0 : β2 = 0 and test this using the t-test. All of the information is

automatically provided in the R output: the estimate is 0.01 and has a standard

error of 0.02, so that the test statistic is 0.659, which yields p = 0.514. With a

p-value this high, we cannot reject the null hypothesis. Thus, we conclude that

there is no effect of GDP on FDI in closed economies.

If we want to test the significance of the slope for GDP in open economies,

then things become slightly more complex. Table 9.4 shows that the simple

slope is now β2 + β4. An insignificant slope thus means that we fail to reject

3We drop Nigeria from the estimation because a separate slope cannot be estimated. To
do this, we would need at least two data points but the region of Nigeria includes only one
observation.
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H0 : β2 +β4 = 0. We can use the multcomp library to test this hypothesis. We

find that the the simple slope is approximately 0.10, with an estimated standard

error of 0.01. Under the null hypothesis, the test statistic is 12.18 and has a

p-value of 0.000. Thus, for any customary Type-I error rate, the null hypothesis

must be rejected. We conclude that there is a significant relationship between

GDP and FDI in open economies.

9.3 Interactions Between Covariates

In our most recent explorations, we treated GDP as a covariate and trade open-

ness as a factor. However, it is possible to obtain a continuous measure of trade

openness. If we use this, then, the interaction between the two variables simply

becomes one of two covariates. Consequently we would be estimating

FDIi = β0 + β1Opennessi + β2GDPi + β3Democi +

β4Opennessi × GDPi

Again, this model can be estimated using OLS; the estimates are displayed in

Table 9.5.

9.3.1 Interpretation

For the interpretation, we rely once more on the simple slope equation. For

example, if we are interested in the effect of per capita GDP, we can compute

the simple slope as

∂µi
∂GDPi

= β2 + β4Opennessi

This looks like any other simple slope equation, except that trade openness is

now measured on a continuum.

We can now proceed in a number of different ways. A common approach is

to depict the simple slope as a function of all observed values of the moderator.
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Table 9.5: Example of an Interaction Between Two Covariates

Dependent variable:

Per Capita FDI

Democracy −16.91
(10.15)

GDP per capita −0.08∗∗∗

(0.01)

Trade Openness 0.23
(0.63)

Openness × GDP 0.001∗∗∗

(0.0001)

Constant 97.38
(58.11)

Observations 44
Adjusted R2 0.94

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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In our case, this would mean that we obtain the estimator

β̂2 + β̂4Openness

and its estimated variance

V̂ar[β̂2 + β̂4Openness] = V̂ar[β̂2] + Openness2 · V̂ar[β̂4] +

2 · Openness · Ĉov[β̂2, β̂4]

This then allows us to generate a confidence interval that can be shown along

with the simple slope. The necessary computations with a 95% confidence

interval are shown in the syntax below, which assumes that the data are stored

in africa and the estimation results in fit:

l i b r a r y ( d p l y r )

l i b r a r y ( g g p l o t 2 )

a f r i c a <− mutate ( a f r i c a , s i m p l e . s l o p e=coef ( f i t ) [ 3 ] +

coef ( f i t ) [ 5 ] ∗ o p e n n e s s )

a f r i c a <− mutate ( a f r i c a , var . s l o p e=vcov ( f i t ) [ 3 , 3 ] +

o p e n n e s s ˆ2∗ vcov ( f i t ) [ 5 , 5 ] + 2 ∗ o p e n n e s s ∗ vcov [ 3 , 5 ] )

a f r i c a <− mutate ( a f r i c a , l b . s l o p e=s i m p l e . s l o p e−
qt ( . 9 7 5 , df . r e s i d u a l ( f i t ) ) ∗ s q r t ( var . s l o p e ) )

a f r i c a <− mutate ( a f r i c a , ub . s l o p e=s i m p l e . s l o p e+

qt ( . 9 7 5 , df . r e s i d u a l ( f i t ) ) ∗ s q r t ( var . s l o p e ) )

g g p l o t ( a f r i c a , a e s ( x=openness , y=s i m p l e . s l o p e ))+

geom l i n e ()+

geom r i b b o n ( a f r i c a , a e s ( ymin=l b . s l o p e , ymax=ub . s l o p e ) ,

a l p h a =.2)+

geom rug ( s i d e s=”b”)+

x l a b ( ” Trade Openness ”)+

y l a b ( ” S l o p e f o r GDP”)+

theme bw ( )

The resulting graph is shown in Figure 9.5. It shows how the effect of a country’s
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Figure 9.5: Simple Slope for GDP as a Function of Trade Openness
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wealth increases with trade openness. It also shows that the slope for GDP is

sometimes statistically significant and negative and at other times is significant

and positive.4 Note that the horizontal axis shows the values of the moderator,

whereas the vertical axis shows the values of the simple slope.

A second approach is to select specific values of the moderator and to

evaluate the simple slope at those values. Oftentimes, researchers select the

minimum, maximum, and arithmetic mean of the moderator, but other choices

may be more useful depending on your needs. For example, one could use the

25th, 50th, and 75th percentiles of the moderator. These values are taken from

the estimation sample, i.e., the sample that produced the regression estimates.

Let us use the conventional values of the moderator to interpret the results

from our most recent FDI model. In the estimation sample, trade openness

ranges from 27.00 to 158.00, with a mean of 81.27. We can use the multcomp

4Significance is judged by whether the value of 0 is included in the 95% confidence interval
at a particular value of the moderator.
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library to perform the necessary computations. For example, at the minimum

l i b r a r y ( multcomp )

R <− matrix ( c ( 0 , 0 , 1 , 0 , 2 7 ) , nrow=1)

summary( g l h t ( f i t , l i n f c t =R) )

If we perform this computation for each of the reference values of trade open-

ness, we obtain the following results:

Openness Slope SE t p

Minimum −0.044 0.012 −3.799 0.000

Mean 0.022 0.006 3.408 0.002

Maximum 0.115 0.006 20.450 0.000

Hence, we observe that GDP has a statistically significant negative effect when

openness is at its minimum. It has a statistically significant positive effect when

openness is at its mean or maximum.

9.3.2 Hypothesis Testing

Testing the Interaction When dealing with an interaction between two co-

variates, the very first test one should perform concerns the significance of the

interaction term. Looking at the simple slope equation, the effect of GDP is

rendered constant when β4 = 0. When we formulate this as the null hypothesis,

then a t-test suffices to determine its fate. Our estimate of β4 is 0.001, with an

estimated standard error of 0.0001. Dividing the estimate by the standard error,

the test statistic under the null hypothesis is 10.997. This yields p = 0.000, so

that for any customary Type-I error rate the conclusion will have to be that the

null hypothesis is rejected. Thus, we conclude there is a significant interaction

between trade openness and per capita GDP.

The Johnson-Neyman Technique Once we have established that there is a

significant interaction effect, then we would like to ascertain for what values of

the moderator the simple slope is statistically significant. For this purpose, one
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can use the technique proposed by Johnson and Neyman (1936). The starting

point is that the simple slope for GDP is not statistically significant when the

test statistic lies between the critical values of the t-distribution. This means

that significance starts at ±tCrit, which allows us to write

±tCrit =
β̂2 + β̂4Openness[

V̂ [β̂2 + β̂4Openness]
].5

Rearranging terms and squaring then yields the following equation:

t2CritV̂ [β̂2 + β̂4Openness]−
(
β̂2 + β̂4Openness

)2
= 0

This is a quadratic equation, which can be solved using standard algebraic

methods.

The library rockchalk in R can be used to perform the necessary compu-

tations.

l i b r a r y ( r o c k c h a l k )

s i m p l e <− p l o t S l o p e s ( f i t , modx = ” o p e n n e s s ” ,

p l o t x = ” gdppc ” )

j n <− t e s t S l o p e s ( s i m p l e )

p lot ( j n )

The first command causes the computation (and depiction) of the simple slopes

for GDP. The second command causes the computation of the values of trade

openness beyond which the simple slopes for GDP are statistically significant

at the .05-level. The last command produces a graphical display of the results,

should one desire this. For our data, we find that the simple slope for GDP is

statistically significant for values of openness below 47.39 and for values above

74.87. In between those boundaries, there is no evidence that GDP exerts a

statistically significant effect on FDI.

The Johnson-Neyman technique is not well known in political science. Nev-

ertheless, it provides a potent method for establishing where the simple slope is

significant and where it is not. In our example, we find that the boundaries are



9.3. INTERACTIONS BETWEEN COVARIATES 213

within the observed range of openness. When both boundaries lie beyond this

range, then we know that the simple slopes are always significant. When one

boundary lies beyond the observed range, then we know that the simple slopes

on this side of the moderator distribution are all statistically significant.

9.3.3 To Center or Not to Center, That Is the Question

Interactions between covariates may induce severe multicollinearity. One conse-

quence of this collinearity is that the interaction term and/or its components fail

to achieve statistical significance due to inflated standard errors (see Chapter

10). More specifically, the statistical power could be reduced.

Where does this multicollinearity come from? Aiken and West (1991)

demonstrate the following results for an interaction between the covariates X

and Z:

σX×Z,X = E
[
(xd)2zd

]
+ σ2

XµZ + σX,ZµX

σX×Z,Z = E
[
(zd)2xd

]
+ σ2

ZµX + σX,ZµZ ,

where xd = x − µX and zd = z − µZ (see Appendix C.5 for a proof). Under

multivariate normality among the predictors, these expressions simplify to

σX×Z,X = σ2
XµZ + σX,ZµX

σX×Z,Z = σ2
ZµX + σX,ZµZ

When we peruse these equations, we notice that the means of X and Z play

a prominent role in the covariance between the interaction and its constituent

terms. Since these means are unlikely to be zero, it is possible that the covari-

ance is quite large, thus causing a problem with multicollinearity.

Can we solve this problem? Aiken and West (1991) believe it can be and that

the solution is surprisingly easy. If we center the predictors before we create the

interaction term, then we eliminate most of the collinearity in on-normal cases

and all of it in the multivariate normal case. This is easily demonstrated for the

normal case. Using the earlier definitions of xd and zd, the centered interaction
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is xd × zd. If we now evaluate the covariances between the interaction and its

constituent terms, we get

σXd×Zd,Xd = σ2
XdµZd + σXd,ZdµXd = 0

σXd×Zd,Zd = σ2
ZdµXd + σXd,ZdµZ ]Zd = 0

These expressions hold because µXd = µZd = 0. We see that all of the

covariance—and hence collinearity—disappears. It can be demonstrated (see

Appendix C.5) that centering does not alter the estimate of the interaction.

The presentation above assumes that we know the population means. This

assumption is not essential, however. We can center about the sample means

of X and Z to create the interaction. After all, E[x − x̄] = E[z − z̄] = 0. If

you center about the sample means, however, you should make sure to use the

means from the estimation sample. In this way, you can be sure that the means

of the centered variables are zero.

It is easy to implement centering in R by using the pequod library. The

syntax for our model is

l i b r a r y ( pequod )

f i t <− l m r e s ( f d i p c ˜democ+o p e n n e s s ∗gdppc ,

data=a f r i c a , c e n t e r e d=c ( ” o p e n n e s s ” , ” gdppc ” ) )

summary( f i t )

This yields the estimates shown in Table 9.6. Looking at those estimates,

we observe that the partial regression coefficient for trade openness is now

statistically significant, as is the constant. This was not the case in Table

9.5 due to collinearity problems. We also observe that the partial regression

coefficient for the interaction is identical to what we observed in Table 9.5; the

same is true for its standard error. The coefficients for GDP and trade openness

are different from those reported in Table 9.5. The constant has also changed.

These are natural consequences of the centering of GDP and trade openness.

We can repeat the earlier exercise of looking at the simple slope at different

values of the moderator. The minimum of the centered trade openness variable
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Table 9.6: Example of Centering with Interactions

Dependent variable:

Per Capita FDI

Democracy −16.91
(10.15)

GDP per capita 0.02∗∗∗

(0.01)

Trade Openness 3.53∗∗∗

(0.55)

Openness × GDP 0.001∗∗∗

(0.0001)

Constant 175.20∗∗∗

(50.51)

Observations 44
Adjusted R2 0.94

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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is -54.27, while the maximum is 76.73, and the mean is zero. This produces

Opennessd Slope

Minimum −0.044

Mean = 0 0.022

Maximum 0.115

We see that these simple slope estimates are identical to what we derived on

the basis of Table 9.5. Centering has changed nothing to the partial effects of

GDP.

While the present example shows a case of improved significance in an in-

teractive model after centering, there is considerable skepticism among political

methodologists that the procedure works (see, for example, Brambor, Clark and

Golder, 2006; Kam and Franzese, 2007). The argument is that multivariate

normality almost never holds for real data. More fundamentally, multicollinear-

ity is a problem of insufficient data (see Chapter 10) and centering does not

contribute any new information that should help with the estimation.

Even if one shares these doubts, there is an advantage to centering on

which almost everyone can agree: it aids in the interpretation of the partial

regression coefficients of the terms that constitute the interaction. To see this,

let us contrast the simple slope equations that derive from the uncentered and

centered analysis. In the uncentered analysis, we have seen that

∂µ

∂GDP
= β2 + β4Openness

This reduces to β2—the partial slope of GDP—if and only if Openness is zero.

But we have seen that Openness ranges between 27 and 158, so that it is never

zero. The upshot is that we cannot interpret β2. In the centered analysis, the

simple slope is given by

∂µ

∂GDPd
= β2 + β4Opennessd

This reduces to β2 if Opennessd = 0, which happens when Openness is at its

mean value. The partial slope of GDP can thus be meaningfully interpreted.
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Figure 9.6: Depiction of a Three-Way Interaction
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Note: W and Z are moderators.

9.4 Higher-Order Interactions

The interactions that we have considered so-far are so-called two-way inter-

actions because they involve two variables. It is entirely possible to create

three-way, four-way and, in general, multi-way interactions should there be a

theoretical reason to do so. One simply needs to be aware that it may require a

large sample size to achieve some modicum of statistical power to detect such

interactions.

Consider Figure 9.6, which illustrates a three-way interaction, as well as all

possible two-way interactions, and main effects. The main effects are from W

to Y , from X to Y , and from Z to Y . The main effect from W on Y is

moderated by Z, as is the main effect of X on Y . The moderation of the

relationship between X and Y via W , however, is itself also moderated (by Z).

Thus, we are now exploring conditions that are themselves conditional.

The corresponding regression model can be derived as follows. We start
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with a model of the dependent variable where we let the effects of X and W

vary across units:

yi = β0 + α1iwi + α2ixi + β3zi + εi

We now model α1i and α2i:

α1i = β1 + β5zi

α2i = γ1i + γ2iwi

(If the equation includes Z, then it is written in terms of βs; otherwise, it is

written in terms of γis.) Substitution yields

yi = β0 + β1wi + β3zi + β5wi × zi +

γ1ixi + γ2iwi × xi + εi

We now model the γis:

γ1i = β2 + β6zi

γ2i = β4 + β7zi

Substitution now yields

yi = β0 + β1wi + β2xi + β3zi +

β4wi × xi + β5wi × zi + β6xi × zi +

β7wi × xi × zi + εi

We see that the full model includes all main effects, all two-way interactions,

and a three-way interaction.

The interpretation is as always in terms of the simple slope. For example,

the simple slope equation for X is

∂µ

∂x
= β2 + β4wi + βzi + β7wi × zi
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The presence of a two-way interaction in this equation shows that the moder-

ating effect of W is itself moderated by Z.

As an example, let us consider exit poll data from the 2008 U.S. presidential

elections. Here, we have aggregated the individual survey responses to precinct-

level estimates of the following attributes: (1) the percentage of the Obama vote

share (dependent variable); (2) the proportion of whites; (3) the proportion of

women; and (4) the proportion of voters with a BA or higher degree. We center

the last three variables and enter them into the following regression model:

Obamai = β0 + β1Whitei + β2Femalei + β3BAi +

β4Whitei × Femalei + β5Whitei × BAi +

β6Femalei × BAi + β7Whitei × Femalei × BAi +

εi

The OLS estimates are shown in Table 9.7. For the interpretation, we look at

the effect of the proportion of BAs, setting the proportions of whites and women

to ±1 standard deviations about the mean:

Female White Slope SE t p

−1SD −1SD 17.53 9.16 1.91 0.057

−1SD +1SD 17.43 10.06 1.73 0.084

+1SD −1SD 23.66 10.50 2.25 0.025

+1SD +1SD 49.46 9.63 5.14 0.000

The results show that a unit increase in the proportion of BAs (i.e., going from no

to all BAs in a precinct) does not have a significant effect (at the .05-level) when

the proportion of females is comparatively low. It does have a significant effect

when the proportion of females is comparatively high. This is true regardless of

whether the proportion of whites is low or high. The strongest effect, however,

is attained when the proportions of women and whites are comparatively high.

This is clear evidence of a three-way interaction between the proportion of BAs,

whites, and women in the precinct.

You will have noticed that interpreting three-way interactions is a bit more
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Table 9.7: Example of a Model With a Three-Way Interaction

Dependent variable:

Obama Vote Share

Prop. White −46.47∗∗∗

(3.80)

Prop. Female 22.19∗

(11.64)

Prop. BA 27.02∗∗∗

(4.96)

Prop. White × Prop. Female 50.93
(41.90)

Prop. White × Prop. BA 22.47
(18.81)

Prop. Female × Prop. BA 104.77∗

(59.36)

Prop. White × Prop. Female × 248.49∗

Prop. BA (144.92)

Constant 62.58∗∗∗

(0.96)

Observations 300
Adjusted R2 0.43

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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involved than interpreting two-way interactions, since it becomes relevant to

consider combinations of the values of the moderators. The problem is com-

pounded when we add four-way and even higher order interactions. Therefore,

the inclusion of such terms is recommended only if (1) there is good theory

to suggest their inclusion and (2) the sample size is sufficiently large to attain

reasonable statistical power.

9.5 Important Applications of Interactions

9.5.1 The Two-Way ANOVA Model

If an interactive model includes only factors and their interactions, then the

model is known as the ANOVA or analysis-of-variance model. Such models

are often used to analyze randomized experiments. Although we shall revisit

randomized experiments in Chapter 13, we can already introduce the basic

ideas and analytic tools in this chapter.

Example In political surveys, respondents are frequently asked to provide ide-

ological ratings of political candidates. Ostensibly, responses to these questions

are based on factual knowledge about the candidate. However, a wealth of evi-

dence suggests that prior questions may influence responses as well. Particularly

relevant in this regard would be ideological rating questions of other candidates.

Imagine, we conduct the following experiment.5 We are interested in the

ideological ratings of Jimmy Carter on a 9-point ideological scale that runs from

1=conservative to 9=liberal. We consider two experimental conditions, consti-

tuting two factors. The first factor concerns the ideology of other candidates

that are presented along with Carter. Here, there are four groups: (1) Carter is

presented along with three liberal candidates (Jerry Brown, Ted Kennedy, and

George McGovern); (2) there are two liberal candidates (i.e., the group consists

of Ted Kennedy, George McGovern, and Ronald Reagan); (3) there is one liberal

candidate (i.e., the group consists of Ted Kennedy, Ronald Reagan, and Gerald

5This is an expansion on the design described by Brown and Melamed (1990, p. 20). Their
design includes only the anchoring condition; I have added the accuracy condition.
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Table 9.8: Example of a Factorial Design

Anchor (# Liberals)
Motivation 3 2 1 0

Control 5,3,3,3 3,6,2,5 6,5,6,5 6,5,6,7
Accuracy 5,5,7,4 6,4,5,6 5,5,6,6 3,7,5,4

Notes: Hypothetical data. Table entries are
ideological ratings of Carter.

Ford); and (4) there are no liberal candidates (i.e., the group consists of Ronald

Reagan, Gerald Ford, and John Connoly). The expectation is that Carter is

rated more conservatively the more liberals are mentioned with him. A second

factor concerns motivation. Half of the participants do not receive special in-

structions (control). The other half, however, are told that they have to justify

their rating of Carter after the experiment. It is believed that this will prompt

an accuracy motivation, which makes participants less susceptible to anchoring

on the ideology of the candidates mentioned along with Carter. Participants

are randomly assigned to the resulting eight groups/cells. This means that a

random number generator is used to determine to which group the participant

is assigned. The importance of this will be discussed in much greater detail in

Chapter 13. Hypothetical data from this experiment are shown in Table 9.8.

Before we analyze this experiment, a couple of terminological conventions

are worth conveying. First, an experiment that uses random assignment and

fully crosses two factors is known as a factorial design. Second, an experimental

design in which each cell has the same number of participants is called balanced.

In general, when designing experiments researchers always strive for balance.

Model and Results If we set the control motivation and 3-liberals condition

as the baselines, then one way to write the two-way ANOVA model is

Carteri = β0 + β1Accuracyi + β2Lib2i + β3Lib1i + β4Lib0i +

β5Lib2i × Accuracyi + β6Lib1i × Accuracyi +

β7Lib0i × Accuracyi + εi
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Table 9.9: Two-Way ANOVA Results

df Sum Sq F p

Motivation 1 1.53 1.105 0.304
Anchor 3 7.34 1.767 0.180
Motivation × Anchor 3 10.84 2.609 0.075
Residuals 24 33.25

Notes: Based on Table 9.8.

(Jobson (1991) calls this the base cell representation of the ANOVA model.)

Although one can show the parameter estimates for this model, it is customary to

show an analysis of variance table, as is done in Table 9.9.6 Such a table shows

how the variance is distributed over the statistical main effects, the interaction,

and the residuals.

What can we conclude from Table 9.9? We observe that neither of the

statistical main effects is statistically significant. The interaction, however, is

significant at the .10-level. It suggests that the effect of the anchor depends on

the motivation.

This can also be observed from the predicted means. The computational

formulas and estimates for these means are shown in Table 9.10. In the moti-

vational control group, it appears that the anchoring effects are quite dramatic.

For example, when Carter is included in a group of three liberals, then his ide-

ological rating is on the average 3.5, i.e., toward the conservative end of the

scale. However, when he is included in a group of zero liberals, the average

ideological placement shoots up to 6.0, toward the liberal end of the scale. The

fluctuations in the means is much more modest in the accuracy condition. Here,

the average placement hovers around 5.00, which is right at the center of the

ideological scale.

Types of Sums of Squares The sums of squares listed in Table 9.9 are so-

called Type-I sums of squares. There are also so-called Type-II and Type-III

sums of squares. These terms were introduced by the SAS Institute to distin-

guish between different methods of computing the effects of factors and their

6This table was obtained using R’s aov function.
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Table 9.10: Predicted Means for the Experiment

Motivation Anchor Formula Estimate

Control 3 Liberals µ̂ = β̂0 3.50

Control 2 Liberals µ̂ = β̂0 + β̂2 4.00

Control 1 Liberal µ̂ = β̂0 + β̂3 5.50

Control 0 Liberals µ̂ = β̂0 + β̂4 6.00

Accuracy 3 Liberals µ̂ = β̂0 + β̂1 5.25

Accuracy 2 Liberals µ̂ = β̂0 + β̂1 + β̂2 + β̂5 5.25

Accuracy 1 Liberal µ̂ = β̂0 + β̂1 + β̂3 + β̂6 5.50

Accuracy 0 Liberals µ̂ = β̂0 + β̂1 + β̂4 + β̂7 4.75

Notes: Table entries are based on Table 9.8.

interactions. In a balanced design, they are indistinguishable. In an unbal-

anced design, however, there can be marked differences among them. Since

unbalanced data are not uncommon in the practice of political research, it is

important to know the differences among the sums of squares and when to use

a particular type.

Let’s write the ANOVA model in the following schematic manner

y = A+B +AB + ε,

where the first two terms capture the statistical main effects of factors A and

B, respectively, the third term captures the interaction, and the last term re-

flects experimental error. With Type-I, the sums of squares (SS) are derived

sequentially. Thus:

SS(A)

SS(B|A)

SS(AB|A,B)

Since A is the first term in the model, its sums of squares are computed uncon-

ditionally. Thus A is free to account for as much variance in Y as it can. This

is different for B, which enters as the second term. It can only account for what

has not already been explained by A. On top of that, only the part of B that
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is non-redundant with A can be doing the explaining. Finally, the interaction

comes into play only after we have controlled for the statistical main effects of

A and B. If there is still something to be explained, then the interaction can

give it a try.

The problem with Type-I sums of squares is that order in which we include

terms into a model is generally arbitrary. Any permutation of the terms A, B,

and AB is legitimate, but changing the order can have dramatic effects. In

fact, we saw this when we looked at relative importance in Chapter 5. Due to

the arbitrariness, Type-I sums of squares are usually not what we want.

With Type-II sums of squares, we use the following computations:

SS(A|B)

SS(B|A)

SS(AB|A,B)

The statistical main effect of A is thus computed after we control for B. Sim-

ilarly, the main effect of B is computed after we control for A. The sums of

squares of the interaction effect, however, are computed only after the statistical

main effects have been removed. This is a conservative approach for detect-

ing interactions. Indeed, the working assumption is that the interaction is not

significant. It tends to be a powerful approach for discovering statistical main

effects (more so than Type-III) and eliminates the arbitrary distinction between

the effects of A and B.

Finally, Type-III sums of squares assumes that the interaction is statistically

significant. The sums of squares of the statistical main effects and interaction

are then computed as

SS(A|B,AB)

SS(B|A,AB)

SS(AB|A,B)

i.e., we condition on the remaining factor and the interaction. This type should

be avoided if the interaction is not significant, as it reduces the power to detect
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Table 9.11: An Unbalanced Factorial Design

Anchor (# Liberals)
Motivation 3 2 1 0

Control 3,3,3 3,6,2,5 6,5,6,5 6,5,6,7
Accuracy 5,5,7,4 6,5,6 5,5,6,6 7,5,4

Notes: Hypothetical data. Table entries are
ideological ratings of Carter.

statistical main effects.

In R, the car package allows the computation of Type-II and Type-III sums

of squares; the standard anova function gives Type-I sums of squares. To

illustrate this, imagine that we lost the data of several participants in Table 9.8,

thus getting the data shown in Table 9.11. If we now run the different sums of

squares we obtain the results in Table 9.12. We see that the findings regarding

the statistical main effects change quite dramatically depending on what type

of sums of squares we use. In this particular case, Type-III may be the best

option due to the marginally significant interaction effect.

9.5.2 Difference-in-Differences

A second important application of interactions is difference-in-differences, a

widely used approach for drawing causal inferences. I should state up-front that

there is nothing causal about regression analysis per se. However, when the

model is combined with certain assumptions that ensure causal identification,

then we can draw causal inferences. By causal identification, I mean that we

can uncover an unbiased estimate of the true causal effect.

But what is the true causal effect? Here, I draw from the ideas of counter-

factual theories of causation. As Hume (1993) already suggested in the 18th

century, one can define a causal effect as the difference in the outcome that

we observe in the presence of a cause and the outcome that we would have

observed in its absence. A putative cause D has a causal effect to the extent

that the two outcomes deviate from each other.

The problem is that we never observe both outcomes for one and the same
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unit. For example, when the cause is present, then we do not observe the

outcome that would have occurred had it been absent; we only observe the

outcome that did occur in the presence of the cause. Put differently, we have

missing data. It might be possible, however, to impute these missing data, i.e.,

to develop a reasonable guess of what we would have observed in the absence

of the cause. This is the intuition behind difference-in-differences.

The Approach To determine our thoughts, let us consider a famous study

by Card and Krueger (1994) on the effects of a minimum wage increase on

employment in the fast-food sector. This study tracked a sample of fast-food

restaurants in two American states, New Jersey and Pennsylvania, at two dif-

ferent time points, February-March 1992 and November-December 1992. In

between those two time points, New Jersey increased its minimum wage from

$4.25 to $5.05 per hour. We call this increase the treatment, which makes New

Jersey into the treated unit. Pennsylvania, which did not see a minimum wage

hike, is the control unit. We capture this by assigning the value D = 1 to New

Jersey and D = 0 to Pennsylvania. We also define a time dummy, T , which

takes on the value 1 in the post-treatment period (November-December) and

0 in the pre-treatment period (February-March).

We now counterfactually define the causal effect of the treatment for New

Jersey:

α = E[Y |D = 1, T = 1,NJ]− E[Y |D = 0, T = 1,NJ]

The causal inference literature calls this the average treatment effect of the

treated (ATET). Here, Y is the full-time employment (FTE) in a fast-food

restaurant. The first term on the right hand side is estimable, since this is the

average FTE after the minimum wage hike. The second term, by contrast, is

unknown, since this is the average FTE we would have observed in New Jersey

in November-December, had minimum wages not been increased.

In order to identify the causal effect, we need to impute the second term.

How can we do this? We make the following assumption: absent the treatment,

the trajectory of change in FTE in New Jersey would have been the same as
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that in Pennsylvania. Let

δ = E[Y |D = 0, T = 1,PA]− E[Y |D = 0, T = 0,PA]

This is the change in the expected FTE in Pennsylvania. The first term on the

right-hand side gives the expected FTE in Pennsylvania in November-December.

The second term does the same in February-March. Note that D is always 0 be-

cause Pennsylvania is never treated. We now use δ to impute the counterfactual

outcome for New Jersey in November-December:

µ̂|D = 0, T = 1,NJ = E[Y |D = 0, T = 0,NJ] + δ

Here, The first term on the right-hand side is the expected FTE in NJ prior to

the minimum wage increase, which is estimable because we have data on FTEs

in New Jersey in February and March. The left-hand side is the predicted mean

FTE had New Jersey not seen a minimum wage hike.

Now, it is a matter of substituting the various equations back into the

formula for the treatment effect:

α = E[Y |D = 1, T = 1,NJ]− µ̂|D = 0, T = 1,NJ

= E[Y |D = 1, T = 1,NJ]− (E[Y |D = 0, T = 0,NJ] + δ)

= (E[Y |D = 1, T = 1,NJ]− E[Y |D = 0, T = 0,NJ])−

(E[Y |D = 0, T = 1,PA]− E[Y |D = 0, T = 0,PA])

This can be estimated by taking the change in the mean FTE in the New Jersey

sample and subtracting the change in the sample mean for Pennsylvania.

The whole idea is illustrated in Figure 9.7. Here, the blue line shows the tra-

jectory of change in Pennsylvania. The red dashed line is the imputed trajectory

of change that we would have observed in New Jersey absent the treatment.

This line runs parallel to the blue line, reflecting the assumption that the tra-

jectories of change are identical in Pennsylvania and no-treatment New Jersey.

The solid red line is the actual trajectory of change in New Jersey. The differ-

ence between the end points of the solid and dashed red lines is the treatment
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Figure 9.7: The Difference-in-Differences Design
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Note: Based on Card and Krueger (1994). Blue = Pennsylvania; Red = New Jersey. Solid
lines = observed trends; dashed line = counterfactual trend.

effect.

Obviously, the crucial point is that we draw parallel lines. This is obviously

allowed only if we believe that the treated and control units are sufficiently sim-

ilar. In this context, Card and Krueger (1994) spent considerable time selecting

their cases and arguing why parallel trajectories of change could be assumed for

New Jersey and Pennsylvania absent the treatment. Historical data on changes

in FTE help here, but so does qualitative knowledge about the cases.

Model We can estimate the treatment effect by taking the difference in the

differences of the sample means, as I described before. Analogously, we can

formulate a regression model with S, T , and S × T as the predictors, where S

equals 1 for New Jersey and 0 for Pennsylvania. Thus, the conditional expec-

tation function is

µi = β0 + β1Ti + β2Di + β3Di × Ti
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State Period S T CEF

PA Feb-Mar 0 0 µ = β0

PA Nov-Dec 0 1 µ = β0 + β1

NJ Feb-Mar 1 0 µ = β0 + β2

NJ Nov-Dec 1 1 µ = β0 + β1 + β2 + β3

Notes: CEF = conditional expectation function.

Table 9.13 shows how this function evaluates for New Jersey and Pennsylvania

at different points in time. The over-time difference in means for Pennsylvania

is given by

(β0 + β1)− β0 = β1

The over-time difference in means for New Jersey is given by

(β0 + β1 + β2 + β3)− (β0 + β2) = β1 + β3

The difference in the differences is

(β1 + β3)− β1 = β3

This means that β̂3 serves as an estimator of the treatment effect.

When we apply the interactive model to the data collected by Card and

Krueger (1994), we observe that β̂3 = 2.33, p < .10. Hence, there was a slight

and positive effect of the minimum wage increase, which is only significant,

however, at the .10-level. We can conclude that, in this case, increased minimum

wages did not undermine employment in the fast-food sector.

9.5.3 Regime Change and Splines

A very useful application of dummy-continuous interactions is the modeling of

regime changes and splines. We speak of a change in the regression regime

when there is a break in the data such that the regression line up to a certain

value of the predictor is different than that afterwards. The change can be in

the slope, the intercept, or both. Splines may be viewed as a particular kind of



232 CHAPTER 9. INTERACTION EFFECTS

Figure 9.8: Oil Prices Between January 1961 and December 1978
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Note: Price per barrel per month. The red lines show the regression regimes before and after
the oil crisis started.

change in the regression regime, whereby the regression lines are connected at

the break-point in order to create a smooth function.

Let us consider the idea of regime change for data on the monthly oil prices

between January 1961 and December 1978 (see Figure 9.8). It is very clear

from the data that oil prices doubled from December 1973 to January 1974

during, what is commonly known as, the oil crisis. Indeed until December 1973,

oil prices where on a downward trajectory. Starting in January 1974, they were

on an upward trajectory. This is emblematic of a regime change. The two

regression regimes are depicted via the red regression lines in Figure 9.8.
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The regression lines where constructed using the following conditional ex-

pectation function:

µt = β0 + β1Dt + β2Ot + β3Dt ×Ot

Here, the subscript t denotes a particular month and µt is the expected oil price

in that month. Further, Ot is a running tally that starts at 0 in January 1961

and increases by 1 in each subsequent month. Finally, Dt takes on the value

of 0 prior to January 1974 and the value 1 starting in January 1974. Given the

model specification, the predicted oil prices through 1973 are given by

µ̂t = β̂0 + β̂2Ot = 23.36− 0.02 ·Ot,

whereas the predicted oil prices from January 1974 onward are given by

µ̂t =
(
β̂0 + β̂1

)
+
(
β̂2 + β̂3

)
Ot = 29.70 + 0.12 ·Ot

To create a spline function, we impose the restriction that the two regression

lines are connected in January of 1974. The connection point, which is at

O = 156, is called the knot. This brings about a smooth(er) transition, which

is important because spline functions should be differentiable at the knot, thus

requiring continuity.

We have seen that the conditional expectation function for O < 156 is given

by µt = β0 + β2Ot. For O ≥ 156, it is given by µ = (β0 + β1) + (β2 + β3)Ot.

Forcing these equations to be identical at the knot means that

β0 + β2 · 156 = (β0 + β1) + (β2 + β3) · 156 ⇔

β0 + β2 · 156− β0 − β1 − β2 · 156− β3 · 156 = 0 ⇔

−β1 − β3 · 156 = 0 ⇔

β1 = −156β3

As we can see, tying the knot amounts to imposing a linear constraint on β1.
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Figure 9.9: A Linear Spline Regression Function
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Note: The knot occurs on January 1, 1974.

We can build this constraint directly into the conditional expectation function:

µt = β0−156β3︸ ︷︷ ︸
β1

Dt + β2Ot + β3Dt ×Ot

= β0 + β2Ot + β3Dt (Ot − 156)

When we estimate this function for the oil price data, we find that β̂0 =

19.30, β̂2 = 0.06, and β̂3 = 0.58. This produces the spline regression function

shown in Figure 9.9. We clearly observe the knot that occurs at the start of

1974.
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In more general terms, if a variable x has a single knot x∗, then the linear

spline regression may be written as

µi = β0 + β1xi + α1di(xi − x∗),

where

di =

{
0 if xi ≤ x∗

1 if xi ≥ x∗

If there are multiple knots, then the model may be written as

µi = β0 + β1xi +
M∑
m=1

αmdim(xi − x∗m),

where

dim =

{
0 if xi ≤ x∗m
1 if xi ≥ x∗m

and M is the total number of knots. One can expand this model even further

by adding polynomial terms, which we shall not show here but will generally

make the function smoother about the knots.

R makes it extremely easy to include splines in a regression analysis:

l i b r a r y ( s p l i n e s )

f i t <− lm ( p r i c e ˜ bs (O, d e g r e e =1, k n o t s=c ( 1 5 6 ) ) ,

data=o i l )

summary( f i t )

The bs function generates splines, in this case for O. It does so at the knot

O = 156 and the spline is linear (since degree is equal to 1). The output is

shown in Figure 9.10. The first line of the output shows the estimate of the

intercept. The second line shows the change in the predicted oil price between

January 1961 (O = 0) and January 1974 (O = 156). Thus, to get to the

predicted oil price at the knot, we simply add the estimate from the second
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Figure 9.10: R Spline Regression Output

Note: The predicted value at the far left of Figure 9.9 is 19.303. At the knot, it is 19.303
plus 8.737. At the far right, it is 19.303 plus 46.508.

line to the intercept. The third line shows the change in the predicted oil price

between January 1961 and the end of the time series (O = 215). If we add this

number to the intercept, we obtain the predicted oil price in December 1978.

9.6 Conclusions

In this chapter, we have paid extensive attention to interaction effects in the

linear regression model. We have seen that such effects can be used to model

quite complex relationships indeed. This also ends the introduction of the mul-

tiple regression model. You now know pretty much all there is to know about

specifying models in such a way that they capture your theoretical ideas. The

next task, then, is to return to the regression assumptions and to discuss in

greater detail what can be done when they are violated.



Part III

Regression Assumptions and

Diagnostics

237



Chapter 10

Influence, and Normality

In the previous parts of the book, we have seen how one formulates, estimates,

evaluates, and interprets regression models. But how can we be sure that

the results can be trusted, that they are meaningful? We have seen that the

regression model makes a number of assumptions. How do these influence the

credibility of the results? How do we know if these assumptions have been

violated? What can we do about this? The third part of the book is dedicated

to answering these questions.

In this chapter, we start by considering the problem of influence. After one

runs a regression model, it is important to check the sensitivity (or, conversely,

robustness) of one’s results. A sensitivity analysis has several aspects, but one

component is to check for the presence of influential data points.1 This check

is used to ensure that the regression results are not driven entirely by one or a

few atypical observations.

We conclude the chapter by discussing the normality assumption. The pres-

ence of influential data points sometimes (but not always) implies that the nor-

mality assumption is violated. We explore the implications of such violations,

methods for detecting them, and remedies.

By the end of this chapter, you will have learned the first set of diagnostic

and remedial measures. Even more importantly, you will begin to understand the

1Other components include the sensitivity to model specification, a topic we shall take up
elsewhere in this book.
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crucial role that residuals play in uncovering problems with regression models.

10.1 Influential Observations

10.1.1 Defining the Problem

The concept of influence rests on two related ideas: leverage and outlier.

• Leverage: An observation has leverage—or is a leverage point—if its

value on the predictor is atypical compared to other observations.

• Outlier: An observation is an outlier if its value on the dependent variable

is atypical compared to other observations.

An observation has influence when it its presence or absence brings about

large shifts in the regression results, especially, in the partial slope coefficients.

Such influence comes about when the data point is both an outlier and has

leverage. Logically,

Influence = Leverage× Outlier

The principle is illustrated in Panels (a)-(d) in Figure 10.1, which show the

impact on the regression line of points that are leverage points, outliers, both,

or neither.

Panel (a) of Figure 10.1 shows the effect on the regression line of a point

that is neither an outlier nor a leverage point. This point is colored blue (all the

other points are colored pink). The point is not an outlier because it is situated

right around the mean of y (ȳ = 5.2). The point lacks leverage because it

coincides with the mean of x (x̄ = 4.0). The black line in the plot is the

regression line when we include all data points; its sample regression function is

ŷi = 1.65+0.88xi. The dashed pink line is the regression line when we drop the

blue point. It, too, obliges the sample regression function ŷi = 1.65 + 0.88xi.

We see that the two regression lines are indistinguishable, so that the blue point

lacks influence.

Panel (b) shows the effect on the regression line of a point that is an outlier

but lacks leverage. This point is again colored blue in the plot. It is an outlier
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Figure 10.1: Leverage Points, Outliers, and Influence
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Note: The blue point is potentially anomalous. In panel (a) it is neither an outlier nor a
leverage point. In panel (b) it is an outlier but not a leverage point. In panel (c) it is a
leverage point but not an outlier. Finally, in panel (d), it is both an outlier and a leverage
point.
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because it is situated about 3 standard deviations away from the mean of y

(ȳ = 6.9, s = 7.0). The point lacks leverage because it again coincides with

the mean of x. The black line in the plot is the regression line when we include

all data points. The dashed pink line is the regression line when we drop the

blue data point. We see that the blue and red regression lines are parallel.

Thus, the inclusion of the outlier influences the estimate of the constant, which

changes from 1.65 (pink line) to 3.43 (black line). However, it exerts no effect

on the slope coefficient, which is equal to 0.88 regardless of whether the blue

points is included or excluded.

Panel (c) shows the effect of a leverage point that is not an outlier. The blue

point is over three standard deviations removed from the mean of x (x̄ = 6.6,

s = 9.8) and, as such, has leverage. But the point is not all that anomalous on

the dependent variable. Its value on y is precisely where we would expect it to

be based on the pattern in the other observations. The dashed pink regression

line depicts this pattern. As you can see, the blue point falls right on this

regression line, when it is extrapolated. It is no surprise, then, that adding the

blue point to the analysis produces a regression line, drawn here in black, that

is virtually indistinguishable from the pink line. In other words, even though

the observation has leverage, it does not seem to affect the slope (or even the

intercept) of the regression line.

Finally, consider panel (d). Here, the blue data point has leverage and

also is an outlier. We see that the regression line is very different depending on

whether this data point is included or excluded. The dashed pink regression line,

which describes the remaining data points well, has a much shallower slope than

the black regression line, which comes about when we add in the anomalous

observation. More specifically, the sample regression function omitting the blue

point is ŷi = 1.65 + 0.88xi. By contrast, the sample regression function for the

full data set is ŷi = −1.42 + 1.75xi.

Figure 10.1 reveals the importance of leverage points and outliers. They

also show that it is the combination of being an outlier and leverage point

that generates influence on the slope of the regression line. Our next task is

to determine how leverage points, outliers, and influential data points can be

detected.
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10.1.2 Diagnosing Influence

Detecting Leverage Points

Hat values are the most common diagnostic of leverage. These are the diagonal

values of the hat matrix that we encountered in Chapter 4. As we saw in

equation 4.11, the hat matrix is the n× n matrix

H = X
(
X>X

)−1
X>

The diagonal elements of this matrix are the hat values, hii, which range between

0 and 1.2

Why do hat values indicate something about leverage? The answer is that

the hat matrix plays a critical role in transforming the dependent variable into

predicted values. As we have also seen, ŷ = Hy. Large values on the diagonal

of the hat matrix have the effect of giving a lot of weight to a particular score

on the dependent variable. We also see that if the value on y is an outlier,

then the product with the leverage value can be quite large. This would signify

influence.

How do we judge hat values? That is, when is a hat value sufficiently large

to single out an observation as a leverage point? To answer this question, it is

useful to remember the following important property of hat values:∑
i

hii = K + 1

This implies that

h̄ii =
K + 1

n
,

where h̄ii < 1 is the average hat value. This average is frequently used to

evaluate the size of hat values. A common criterion is that a leverage point

is defined as any point for which hii > 2h̄ii. Complementing this criterion are

2We will not spend any time exploring the off-diagonal elements of H, but I should note
that −.5 < hij < .5 for i 6= j.
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Table 10.1: Data and Hat Values from Panel (c) of Figure 10.1

i x y h

1 1.0 2.0 0.096
2 1.0 3.0 0.096
3 2.0 5.0 0.088
4 2.0 4.0 0.088
5 3.0 3.0 0.082
6 3.0 3.0 0.082
7 40.0 36.7 0.959
8 4.0 5.0 0.077
9 5.0 6.0 0.073

10 5.0 7.0 0.073
11 6.0 7.0 0.072
12 6.0 5.0 0.072
13 7.0 8.0 0.071
14 7.0 9.0 0.072

Note: h = hat value.

guidelines that we should consider as a large hat value anything above .5.

We can illustrate the computation and judgment of hat values using the data

that produced panel (c) of Figure 10.1; these data are shown in the second and

third column of Table 10.1. In R, we obtain these hat values via the following

command:

h a t v a l u e s ( lm . o b j e c t )

where lm.object contains the regression results. The average hat value in the

data is .143. It is obvious that h77 is much greater than this (almost 7 times

greater). Thus, we would identify this observation as a leverage point. None of

the other observations produce large hat values, so that the 7th observation is

the only leverage point that we identify.



244 CHAPTER 10. INFLUENCE, AND NORMALITY

Detecting Outliers

The detection of outliers typically involves an analysis of the residuals. Several

types of residuals are relevant in this regard: raw, internally studentized, PRESS,

and externally studentized residuals.

Raw Residuals Raw residuals, which are also known as response residuals

(Fox and Weisberg, 2011), are the type of residuals that we first encountered

in Chapter 1. They are defined as ei = yi − ŷi or, in matrix form,

e = (I−H) y

= (I−H) ε

(see Chapter 4). They have a number of important properties:

1. Their theoretical average is zero: E[ei] = 0.

2. If εi follows a normal distribution, so does ei.
3

3. Let Var(εi) = σ2, then Var(ei) = σ2(1− hii).

These properties will prove important for diagnostic purposes.

In R, the raw residuals can be obtained by running

r e s i d u a l s ( lm . o b j e c t )

An example can be found in the fourth column of Table 10.2. This example

also shows two problems with raw residuals. First, for diagnostic purposes, it

may be difficult to tell if a residual is large because raw residuals do not have

a standardized metric. Second, when we consider the raw residual of the 7th

observation—the blue data point in panel (d) of Figure 10.1—it is not partic-

ularly large. Based on the raw residual, we would never mark this observation

as an outlier, even though an inspection of its score on the dependent variable

makes clear that it is. The reason that the residual for the 7th observation is so

small is exactly the influence that it exerts. Through this influence, it has pulled

3After all, a linear function of a normal variable is itself normally distributed.
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Table 10.2: Data and Residuals from Panel (d) of Figure 10.1

i x y e r p r∗

1 1.0 2.0 1.7 0.8 1.8 0.8
2 1.0 3.0 2.7 1.2 3.0 1.3
3 2.0 5.0 2.9 1.4 3.2 1.4
4 2.0 4.0 1.9 0.9 2.1 0.9
5 3.0 3.0 1.2 0.5 1.3 0.5
6 3.0 3.0 1.2 0.5 1.3 0.5
7 40.0 70.0 1.5 3.2 35.6 8.0
8 4.0 5.0 -0.6 -0.3 -0.6 -0.3
9 5.0 6.0 -1.3 -0.6 -1.4 -0.6

10 5.0 7.0 -0.3 -0.1 -0.3 -0.1
11 6.0 7.0 -2.1 -1.0 -2.2 -0.9
12 6.0 5.0 -4.1 -1.9 -4.4 -2.1
13 7.0 8.0 -2.8 -1.3 -3.0 -1.3
14 7.0 9.0 -1.8 -0.8 -2.0 -0.8

Note: e = raw residual; r = internally
studentized residual; p = PRESS residual;
and r∗ = externally studentized residual.

the regression line toward itself, so much so that the prediction and actual value

of the dependent variable are very close. Precisely because of these limitations,

it is useful to consider some transformations of the raw residuals.

Internally Studentized Residuals To place the residuals on a bounded scale,

we can transform them into so-called internally studentized residuals.4 This is

done by dividing them by their standard deviation:

4Fox and Weisberg (2011) call this the standardized residual, but that term is also reserved
for another form of standardization, where the raw residuals are divided by

√
MSE. Yet

another variant is the normalized residual, which divides the raw residual by the maximum
likelihood estimator of σ.
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Equation 10.1: Internally Studentized Residuals

ri =
ei

s
√

1− hii
,

where s =
√
MSE is the unbiased estimator of σ. The scale of r is bounded

by ±
√
n−K − 1. This allows one to judge the size of the residual.

In R, the internally studentized residuals are obtained by running

rstandard ( lm . o b j e c t )

This produces the residuals shown in the fifth column of Table 10.2. With 14

observations and one predictor, −3.46 ≤ r ≤ 3.46. Judged by this metric, we

actually see a relatively large internally standardized residual for the 7th obser-

vation. So standardization has also helped to draw attention to the problematic

data point. Why this is the case will make more sense once we have looked at

PRESS residuals.

PRESS Residuals Researchers often want to know what the residuals are once

a particular observation has been removed from the regression. One variant of

this is PRESS, the prediction error sums of squares residual:5

Equation 10.2: PRESS Residuals

pi = yi − ŷi(i)
=

ei
1− hii

Here ŷi(i) is the prediction for the ith observation when that observation is not

considered in the computation of the regression coefficients. The formula is

derived in Appendix C.6.

5In the literature, the prediction error sum of squares is given by
∑
i p

2
i .
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There exists a simple relationship between the internally studentized and

PRESS residuals:

ri =

√
1− hii
s

pi

It is no wonder, then, that the internally studentized residuals pick up the effect

of the deletion of a particular data point.

To obtain PRESS residuals in R, we need to use the qpcR library. The syntax

is

l i b r a r y ( qpcR )

PRESS( lm . o b j e c t , v e r b o s e=TRUE)

This produces, among other things, the PRESS residuals. If we only want the

residuals, we can type PRESS(lm.object, verbose=TRUE)$residuals. For

the data from panel (d) in Figure 10.1, the pis are shown in the sixth column of

Table 10.2. Here, we clearly see the problematic nature of the 7th data point.

If we estimate the regression model without this point, the predicted value falls

nearly 36 points short off the actual response. This is a clear indication that

the 7th observation is an outlier.

Externally Studentized Residuals We have seen that the internally studen-

tized residuals, through their relationship with the PRESS residuals, show what

would happen when we delete a data point. However, these residuals may still

mask outliers because one of their ingredients, s, is still based on the totality

of the data. To overcome this problem, we can compute externally studentized

residuals, which are also known as R residuals:

Equation 10.3: Externally Studentized Residuals

r∗i =
ei

s(i)

√
1− hii

(10.1)

Here, s(i) is the standard deviation of the regression after omitting the ith
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observation. It is equal to the square root of

s2
(i) =

(n−K − 1)s2 − e2i
1−hii

n−K − 2

These residuals follow a student’s t-distribution with n − K − 2 degrees of

freedom.

In R, the computation of the externally studentized residuals proceeds using

rstudent ( lm . o b j e c t )

These residuals are shown in the last column of Table 10.2. With n = 14 and

K = 14, the t-distribution has the following characteristics:

• Ninety-nine percent of the R residuals lie between ±3.464.

• Ninety-five percent lie between ±− 2.201.

• Ninety percent lie between ±1.796.

Inspecting the entries in Table 10.2, we can clearly see that all residuals are

situated between the limits of the ninety percent confidence interval, with one

exception. This exception is the 7th observation, whose externally studentized

residual is 8.00, thus exceeding the limits of even the 99% confidence interval.

There is no doubt that this observation is an outlier.

Detecting Influence

Now that we know how to assess whether a point is an outlier or has leverage,

the next question is how do we assess influence. Here, we need to distinguish

between varieties of influence. Does a point influence the predicted values, the

coefficients, efficiency, or what? We now consider a series of measures that help

to answer these questions.
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DFFITS One standard by which to judge influence is to assess the impact of

including an observation on the predicted values of the other observations. The

DFFITS measure (i.e., difference in fitted values)—also known as the Welsch-

Kuh distance—does precisely this. The measure is computed ass6

Equation 10.4: DFFITS

DFFITSi =
ŷi − ŷi(i)
s(i)

√
hii

Here

ŷi − ŷi(i) =
hiiei

1− hii

This may also be written in terms of the externally studentized residuals:

DFFITSi = r∗i

√
hii

1− hii

(see Appendix C.6). There are as many DFFITS values as there are observa-

tions. We can think of these values as scaled differences ŷi− ŷi(i). A large value

on the DFFITS implies that dropping an observation from the estimation will

dramatically change the predicted value for that observation. This is an indi-

cation of great influence. The conventional cutoff is to consider as influential

those points whose absolute DFFITS are greater than 1 or 2.

In R, the DFFITS values are obtained using

d f f i t s ( lm . o b j e c t )

For panel (d) in Figure 10.1, the values are shown in Table 10.3. We see that the

only DFFITS value that exceeds the threshold occurs for the 7th observation.

This can be considered an influential data point in terms of the predictions.

6Sometimes the absolute value of ŷi − ŷi(i) is taken to define the DFFITS (see Chatterjee
and Hadi, 1988).
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Table 10.3: Influence Statistics for Panel (d) of Figure 10.1

i DFFITSi β̂1 − β̂1(i)

1 0.249 -0.008
2 0.415 -0.013
3 0.437 -0.012
4 0.274 -0.008
5 0.156 -0.004
6 0.156 -0.004
7 38.398 0.945
8 -0.073 0.001
9 -0.166 0.002

10 -0.040 0.000
11 -0.263 0.001
12 -0.590 0.002
13 -0.371 -0.001
14 -0.229 -0.001

Note: Based on the data
in Table 10.2

Change in Coefficients Another criterion by which we can judge influence is

an observation’s impact on the regression coefficients. One way to judge this

is to compute the change in the parameter estimates when an observation is

deleted:

Equation 10.5: Change in the Regression Coefficients

β̂ − β̂(i) =

(
X>X

)−1
xiei

1− hii

(see Kmenta, 1997). Here β̂(i) is the estimator after the ith observation has

been omitted. The statistic is reported in the third column of Table 10.3. We

see that the changes in the coefficients are small for all of the observations,

excepting the 7th observation. Here, exclusion of the regression line causes a



10.1. INFLUENTIAL OBSERVATIONS 251

big change in the regression slope.7

Although Equation 10.5 is very useful, another measure has gained more

prominence: DFBETA. This can be seen as a scaled version of the raw differ-

ences between the estimates over the full data and the estimates obtained after

dropping a single observation. Computationally,

Equation 10.5: Change in the Regression Coefficients

DFBETAik =
r∗iwik√

1− hii
∑

iw
2
ik

(see Chatterjee and Hadi, 1988, for a derivation). Here k denotes a particular

element in the vector β̂. Further, wik is the residual that arises when xk is

regressed on all of the other predictors in the model. This formula produces

a vector of DFBETAS for each predictor in the model. An element in each of

these vectors indicates how much the regression coefficient for that predictor

would change if the observation were deleted from the analysis. Belsley, Kuh

and Welsch (1980) suggest that points are influential if |DFBETASik| > 2/n.

7The results were obtained using dfbeta in R. This should not be confused with dfbetas,
which computes DFBETA.
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Appendix A

Basics of Differentiation

Derivatives make a common appearance in statistics. In this appendix, we provide a

brief review derivatives and their use. The key is that you become familiar with the

notation as well as the logic of differentiation and optimization. There is no expectation

that you will become an expert at doing complex derivatives on your own. Fortunately,

most of the derivatives that we need are quite simple, so that even doing them by hand

will not create major headaches.

A.1 Definition

As is shown in Figure A.1, he derivative gives the slope of the tangent line at a par-

ticular point for some function. This can be used to find the extremes (minimum and

maximum) of a function but also to characterize the rate of change, i.e., the sensitivity

of the dependent variable to a change in the independent variable of a function at

a particular point. Both uses are important for linear regression analysis. The rate

of chance helps us to interpret the regression function, whereas using derivatives for

the purpose of finding extremes is essential for least squares and maximum likelihood

estimation.

By defining the derivative as the slope of the tangent at a particular point, we learn

two things immediately. First, we know that we are dealing with a change in y relative

to a change in x. Second, the change in x is infinitesimally small, so that we approach

a point. Thus follows the formal definition of the derivative: for a function y = f(x),

253
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Figure A.1: The Slope of the Tangent

the derivative with respect to x is given by

f ′(x) = lim
∆x→0

∆f

∆x

This actually is the derivative stated in Lagrange’s notation. Leibniz used a different

notation and indicated the derivative as dx/dy. More precisely, this is known as the

first derivative.

We can apply the formula for f ′(x) to derive an expression of the derivative of any

function. As an example, consider the quadratic equation f(x) = ax2 + bx + c. Let

∆x denote the change from x to x+ h, where h goes to 0. Then

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

ax2 + 2ahx+ ah2 + bx+ bh+ +c

h
−

lim
h→0

ax2 + bx+ c

h

= lim
h→0

2ahx+ ah2 + bh

h
= lim

h→0
2ax+ ah+ b

= 2ax+ b
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Table A.1: Useful Derivatives

Function First Derivative
f(x) = a f ′(x) = 0
f(x) = bx f ′(x) = b
f(x) = axb f ′(x) = abxb−1

f(x) = ebx f ′(x) = bebx

f(x) = abx f ′(x) = babx ln a
f(x) = lnx f ′(x) = 1/x
f(x) = logbx f ′(x) = 1/(x ln b)

A.2 Important Derivatives

Table A.1 summarizes the derivatives for a number of important functions that we

encounter in this book. We can also combine these functions. In most cases, this is

done by adding terms. In this case, it is very easy to find the derivative because the

derivative of a sum is equal to the sum of the derivatives. Consider again the generic

quadratic function f(x) = ax2 + bx+ c. Using Leibniz’ notation,

df(x)

dx
=

dax2

dx
+
dbx

dx
+
dc

dx

From the first row of Table A.1, we know that dc/dx = 0. From the second row, we

know that dbx/dx = b. Finally, from the third row we know that dax2/dx = 2ax2−1 =

2ax. Thus, df(x)/dx = 2ax+ b, the result that we derived before.

A.3 Higher-Order Derivatives

So far, we have differentiated a function once with respect to a variable. There is,

however, no reason why we could not differentiate multiple times. For our purposes, it

suffices to differentiate no more than two times. The so-called second derivative can

be seen as the derivative of the first derivative. In Lagrange’s notation,

f ′′(x) = (f ′(x))′

In Leibniz’ notation, the second derivative is written as d2f/dx2.

Consider again the function f(x) = ax2 + bx + c. We have already seen that

f ′(x) = 2ax + b. Then, f ′′(x) is the derivative of f ′(x) with respect to x. Using the
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Figure A.2: Identifying a Maximum

Maximum

x = 1

rules developed in the previous section it is easy to show that f ′′(x) = 2a.

A.4 Function Analysis

Derivatives are extremely useful in function analysis, especially for purposes of finding

the minimum or maximum of a function. The reason is simple: as is illustrated in

Figure A.2, the slope of the tangent line is zero at a minimum or maximum and this, in

turn, means that the first derivative is zero. Thus, we can detect extreme values such

as minimums and maximums simply by taking the first derivative, setting it to zero,

and solving for x.

As an example, consider the function f(x) = −x2 + 2x + 5. This is the function

shown in Figure A.2. Its first derivative is f ′(x) = −2x + 2. We now set this to 0:

−2x + 2 = 0. This is known as the first order condition for a minimum/maximum.

When we solve for x, we obtain x = 1 as the point where the extreme value occurs.

In our example, the graph clearly shows that the extreme in this case is a maximum.

The first order condition by itself does not provide such detailed information. All it tells

us is that there is an extreme value of some kind at x = 1. If we want to know in

greater detail what kind of extreme this is, then we have to rely on the second order

condition. Here, we examine the second derivative at the extreme and explore its sign.
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Specifically,1

f ′′(x) > 0 Minimum

f ′′(x) < 0 Maximum

In our example, f ′′(x) = −2 < 0, so that the second order condition tells us that x = 1

is a maximum.

A.5 Partial Derivatives

In regression analysis, most of the time our functions involve multiple variables. In this

context, we need to conceptualize derivatives as partial derivatives:

The first partial derivative of f(x1, x2, · · · , xK) with respect to xk is the

rate of change in the dependent variable as a result of changing xk at a

particular point, while holding everything else constant. It is written as

∂f/∂xk

Holding constant literally means that, when we take the derivative with respect to xk,

all of the other variables are treated as if they were constants.

Consider the following example: f(x, y) = x2 + 2xy − y3. When we take the

partial derivative with respect to x, we may rewrite the function as x2 + ax− c, where

a = 2y and c = y3 are treated as constants. Using the rules of differentiation that we

developed earlier, the first partial derivative is

∂f

∂x
=

∂x2

∂x
+
∂ax

∂x
− ∂c

∂x
= 2x+ a− 0

Making the appropriate substitutions, this becomes ∂f/∂x = 2x+ 2y. When we take

the partial derivative with respect to y, then the function may be rewritten as a+by−y3,

where a = x2 and b = 2x are constants. Hence,

∂f

∂y
=

∂a

∂y
+
∂by

∂y
− ∂y3

∂y
= 0 + b− 3y2

Making the appropriate substitutions, we get ∂f/∂y = 2x− 3y2.

When we seek the minimum or maximum of a multivariate function, then the first

order condition states that all of the partial derivatives should be simultaneously 0. For

our example, this produces two extreme values: x = 0, y = 0 and x = 2/3, y = −2/3.

1A third scenario is that f ′′(x) = 0. This is a necessary but not a sufficient condition for
an inflection point. Outside of polynomial regression, we generally do not have to worry about
inflection points so that we shall skip this topic.
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To identify whether the extreme values constitute a minimum, maximum, or some-

thing else, we would need to apply the second derivative test. However, this gets to

be quite complicated because there are several second derivatives that we can compute

and all of these are relevant for the second derivative test. Specifically, we can compute

the following second derivatives:

• ∂2f
∂x2 : Here we first differentiate with respect to x and we then take the derivative

and differentiate it once more with respect to x.

• ∂2f
∂x∂y : Here we first differentiate with respect to x and we then take the derivative

and differentiate it with respect to y.

• ∂2f
∂y∂x : Here we first differentiate with respect to y and we then take the derivative

and differentiate it with respect to x.

• ∂2f
∂y2 : Here we first differentiate with respect to y and we then take the derivative

and differentiate it once more with respect to y.

In our example, this produces the following second derivatives: (1) ∂2f/∂x2 = 2; (2)

∂2f/∂x∂y = 2; (3) ∂2f/∂y∂x = 2; and (4) ∂2f/∂y2 = −6y.

For the second order condition, we would now have to place all of these derivatives

into a matrix. We then would compute the eigenvalues of that matrix and consider

their signs. However, this topic lies well beyond the scope of this course, so that we

shall generally not perform second derivative tests in the multivariate case.



Appendix B

Basics of Matrix Algebra

Matrices provide a useful shorthand in multivariate statistics such as multiple linear

regression analysis. A matrix can capture a great deal of information such as all of

the data that we have on the predictors in a model. Mathematical operations on the

information can then be performed at the level of the matrices, as opposed to their

individual elements. Apart from economy of notation, matrices thus offer computational

advantages. In this appendix, we develop the basic intuitions of matrix algebra. The

emphasis is on notation and on those operations that are useful for understanding

multiple regression analysis.

B.1 The Matrix Concept

B.1.1 Definition

For our purposes, a matrix may be defined as a rectangular array of numbers. This

array is characterized by r rows and c columns. It contains r× c numbers. Accordingly,

we say that the matrix is of order r× c. It is customary to denote matrices with capital

bold letters such as X.

The most obvious example of a matrix in statistics is the data matrix. Imagine

we collect data on the Conservatives, Labour, Liberal Democrats, and UKIP in Great

Britain. In addition to recording the party name, we have data on the left-right position

of these parties as well as their support for European integration. Support for European

integration is measured on a 7-point scale that runs from “strongly oppose” to “strongly

support”. On this scale, the Conservatives score 2.3, Labour scores 4.8, the Liberal

Democrats score 6, and the UKIP scores 1. The left right position is measured on an

259
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11-point scale, which runs from “extreme left” to “extreme right”. On this scale, the

Conservatives score 7.1, Labour scores 4.5, the Liberal Democrats score 5, and UKIP

scores 8.8.1 We can collect these data in the following matrix that is of order 4× 2:

D =


2.3 7.1

4.8 4.5

6.0 5.0

1.0 8.8


This is now our data matrix, which may also be written as D4×2 to indicate its order

explicitly. But data matrices are only one type of matrix that we encounter in statistics

and we shall see many other examples later in this appendix.

We treat D as a single object—this is what brings the economy of notation—but

we can always access individual elements, i.e., the individual numbers. For example, if

I want to know the left-right score of UKIP, then all I need is to point to the element in

the fourth row and second column. We call this element d4,2 or, in R notation, D[4, 2].

B.1.2 Types of Matrices

Scalar A scalar is a single number. We can think of this as an order 1× 1 matrix.

Vectors A matrix consisting of a single row or column is called a vector. We speak

of a row vector when the matrix consists of a single row. When it consists of a single

column, then we call it a column vector. We generally denote vectors through lowercase

boldface letters such as x.

Returning to the previous example, it may be of interest to us to capture all of our

data about UKIP. This can be done by creating the row vector

d =
(

1.0 8.8
)

Similarly, we may be interested in creating an object containing all of our data about

left-right party placements. This could be the column vector

d =


7.1

4.5

5.0

8.8


1These data come from the 2010 Chapel Hill Expert Survey.

http://chesdata.eu
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In this book, we follow the convention that all vectors are taken to be column vectors.

Square Matrices If a matrix has as many rows as it has columns, we say that it is

square. A prime example of this is the matrix of sums of squares and cross-products,

which plays an important role in least squares estimation.

Symmetric Matrices A matrix A is said to be symmetric if it is square and if

aji = aij for all j 6= i. For example, the matrix

A =

 1 0 2

0 2 3

2 3 1


is symmetric because a21 = a12 = 0, a31 = a13 = 2, and a32 = a23 = 3. A good

example of a symmetric matrix is the covariance matrix.

Diagonal Matrices A diagonal matrix is a square matrix for which all of the off-

diagonal elements are zero. The diagonal elements are not all zero.

The Identity Matrix The identity matrix is a special kind of diagonal matrix. Here,

all of the diagonal elements are equal to 1 and the off-diagonal elements are equal to

0. This matrix is extremely important in matrix algebra, as it plays a role that is

similar to that of the scalar 1 in ordinary algebra. We indicate the identity matrix as

I. Sometimes, we add a subscript to this to indicate the number of rows/columns. For

example,

I3 =

 1 0 0

0 1 0

0 0 1



Partitioned Matrices A partitioned matrix is a matrix whose elements are them-

selves matrices of sorts. For example, our data matrix about British political parties

may be partitioned as

D =
(

d1 d2

)
Here, d1 and d2 are column vectors of EU party positions and left-right party positions,

respectively.
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Block-Diagonal Matrices A block-diagonal matrix is a partitioned matrix such

that the off-diagonal elements are matrices that consist entirely of zeros. For example,

C =


1 2 0 0

2 1 0 0

0 0 2 1

0 0 1 2


is a block-diagonal matrix, as it can be written as

C =

(
C1 0

0 C2

)

Here, C1 is a 2× 2 matrix with 1s on the diagonal and 2s on the off-diagonal, C2 is a

2×2 matrix with 2s on the diagonal and 1s on the off-diagonal, and 0 is a 2×2 matrix

consisting entirely of 0s. Because of this, it is often referred to as the null matrix.

B.2 Matrix Operations

It is possible to conduct various mathematical operations on matrices. There are sim-

ilarities between these operations and the operations conducted in scalar algebra, but

one cannot take the parallels too far. Some operations in matrix algebra such as trans-

position, for example, do not have an equivalent operation in scalar algebra. Other

operations common in scalar algebra such as division do not have an equivalent in ma-

trix algebra. In general, operations in matrix algebra do not work quite the same as

those in scalar algebra.

B.2.1 Transpose of a Matrix

When we transpose a matrix, we sort of flip it on its side. What used to be rows now

become columns and vice versa. If A is an r × c matrix, then the transpose, A>, is a

c× r matrix. The ith row in A becomes the ith column in A> and the jth column in

A becomes the jth row in A>.

To illustrate this, let us consider the 2× 3 matrix

A =

(
−1 0 1

0 2 0

)
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The transpose is now the 3× 2 matrix

A> =

 −1 0

0 2

1 0


We clearly see that the 1st row in A has become the 1st column in A>. Similarly,

the 2nd row in A is now the 2nd column in A>, We shall use the transpose operator

frequently, for example, to switch back and forth between row and column vectors.

There are no restrictions on the transpose; any matrix can be transposed. By

transposing a matrix twice over, we reverse to the original matrix: (A>)> = A. If A

is symmetric, then A> = A. Other properties of the transpose will be discussed with

other matrix operations.

B.2.2 Matrix Addition and Subtraction

Just like two scalars can be added or subtracted, it is also possible to add and subtract

matrices. Whereas any two scalars can be added or subtracted, however, not every pair

of matrices can be added or subtracted. Matrix addition and subtraction are possible

only if they are conformable. For matrix addition and subtraction the conformability

condition is:

A + B and A−B exist if and only if A and B are of the same order.

If conformability holds, then the matrix addition will produce a new matrix, C with

the following properties:

(1) C = A + B is of the same order as A and B. (2) Element cij ≡
aij + bij .

For matrix subtraction, the properties are:

(1) C = A − B is of the same order as A and B. (2) Elements cij ≡
aij − bij .

As an example, consider the following three matrices:

A =

(
1 2

3 4

)
B =

(
1 0 1

0 1 0

)
C =

(
2 1

2 1

)

The sum A + B does not exist because the two matrices are not of the same order.

By contrast, A and C are conformable for addition. When we add these two matrices,
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we get

A + C =

(
a11 + b11 a12 + b12

a21 + b21 a22 + b22

)
=

(
1 + 2 2 + 1

3 + 2 4 + 1

)

=

(
3 3

5 5

)

The difference C−B does not exist due to the difference in the order of these matrices.

However C is conformable with A for subtraction. The result is:

C−A =

(
c11 − a11 c12 − a12

c21 − a21 c22 − a22

)
=

(
2− 1 1− 2

2− 3 1− 4

)

=

(
1 −1

−1 −3

)

Matrix addition and subtraction have several useful properties. One property that

we shall use frequently is the following:

The transpose of a sum (or difference) of two matrices is equal to the sum

(or difference) of the transposes.

Thus, (A + B)> ≡ A> + B> and (A −B)> ≡ A> −B>, where it is assumed that

conformability holds.

B.2.3 Matrix Multiplication

Whereas the multiplication of scalars is relatively straightforward, the same cannot be

said for matrix multiplication. One complication is that it is actually possible to define

different kinds of matrix products. For our purposes, three products are particularly

useful: (1) scalar products; (2) inner products; and (3) matrix products.

Scalar Product Scalar products can be obtained for any matrix. They are defined

as the product of a scalar into a matrix. This results in the multiplication of every

element of the matrix with the scalar. Thus, the following definition applies.

Consider a scalar k and a r× c matrix A. The scalar product B = kA is

a r × c matrix with elements bij ≡ kaij .



B.2. MATRIX OPERATIONS 265

As an example, consider the 2× 2 identity matrix and the scalar k = 3. Then

kI2 =

(
3 · 1 3 · 0
3 · 0 3 · 1

)
=

(
3 0

0 3

)

Inner-Product The inner-product is the product of a row vector into a column

vector of equal length, which results in a scalar as the outcome. For the product to

exist, the row and column vector have to have the same number of elements.

Let uT be a row vector consisting of K elements. Let v be a column

vector, also consisting of K elements. The inner-product u>v produces

a scalar

s =

K∑
i=1

u>1ivi1

Note that we transpose u because, by convention, u is a column vector.

What the formula for s amounts to is that we take the product of the first element

of u> and the first element of v. We then add to that the product of the second

element of u> and the second element of v and so on and so forth. For example, let

u> = (1 2 0) and let v> = (3 3 1). Then,

u>v =
(

1 2 0
) 3

3

1

 = 1 · 3 + 2 · 3 + 0 · 1 = 9

Inner products play an important role in statistics, including the linear regression

model. For example, least squares estimation is based on the minimization of an inner

product of errors and the SSE is equal to the inner-product of the residuals. In addition,

inner-products form the basis of matrix multiplication, a topic to which we shall turn

next.

Matrix Multiplication By matrix multiplication, I mean the multiplication of one

matrix into the other. There are actually several such products but for this course we

really only need to concern ourselves with the multiplication of rectangular matrices.

Whereas we can multiply any two scalars, the same is not true of rectangular matri-

ces. The matrices have to be conformable for multiplication, which places restrictions

on their order.



266 APPENDIX B. BASICS OF MATRIX ALGEBRA

Imagine we are interested in the product AB. This product exists only

if the number of columns in A is identical to the number of rows in B.

Thus, if A is of order m× p, then B has to be of order p× q.

If AB exists, then it produces a matrix with the following properties.

For conformable matrices, Am×p and Bp×q, the matrix product AB pro-

duces a matrix C of order m× q with elements cij that are equal to the

inner-product of the ith row in A and the jth column in B.

To illustrate these ideas, let us consider the following matrices:

A =

(
−1 0 1

1 2 3

)
B =

(
−1 1

1 −1

)

The matrix product AB does not exist: A has 3 columns, but B only has 2 rows.

On the other hand, the product BA exists: B has 2 columns and this corresponds to

the number of rows in A. The resulting matrix, C, is of order 2× 3 and contains the

following elements.

• c11 is the inner-product of the 1st row in B and the 1st column in A:

c11 =
(
−1 1

)( −1

1

)
= −1 · −1 + 1 · 1 = 2

• c12 is the inner-product of the 1st row in B and the 2nd column in A:

c12 =
(
−1 1

)( 0

2

)
= −1 · 0 + 1 · 2 = 2

• c13 is the inner-product of the 1st row in B and the 3rd column in A:

c13 =
(
−1 1

)( 1

3

)
= −1 · 1 + 1 · 3 = 2

• c21 is the inner-product of the 2nd row in B and the 1st column in A:

c21 =
(

1 −1
)( −1

1

)
= 1 · −1− 1 · 1 = −2
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• c22 is the inner-product of the 2nd row in B and the 2nd column in A:

c22 =
(

1 −1
)( 0

2

)
= 1 · 0− 1 · 2 = −2

• c23 is the inner-product of the 2nd row in B and the 3rd column in A:

c23 =
(

1 −1
)( 1

3

)
= 1 · 1− 1 · 3 = −2

Thus,

C = BA =

(
2 2 2

−2 −2 −2

)
What the example illustrates is an important difference with scalar algebra. In scalar

algebra, the order in which the scalars are multiplied is irrelevant: pq = qp. This is

not true for matrices: in general, AB 6= BA. Indeed, as the example shows, it is even

possible that one of these matrix products exists whereas the other does not.

Another important property that we frequently rely on in regression analysis con-

cerns the transpose of a matrix product:

Assuming conformable matrices, (AB)> = B>A>. In plain English, the

transpose of a product is equal to the product of the transposes in reversed

order.

For some matrices, multiplication of the matrix with itself yields the same matrix

again: AA = A. In this case, we say that the matrix A is an idempotent matrix.

B.2.4 The Inverse

Let us briefly return to scalar algebra. Here, we can define the inverse or reciprocal of

a scalar k as another scalar k−1 such that kk−1 = 1. We can multiply other scalars by

the inverse, for example, k−1m. This means that we divide m by k.

We can do something analogous in matrix algebra. For some matrix A, we can

define the inverse A−1 such that

AA−1 = A−1A = I

We can also use the inverse in multiplications such as A−1B and BA−1. However,

this cannot be interpreted as a division of the elements of B by A. Instead, this is

another matrix product.
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In scalar algebra, the inverse cannot always be computed. Specifically, if k = 0 then

k−1 is undefined. This is also true with inverses of matrices. The inverse requires that:

(1) the matrix A is square; and (2) that this matrix has a non-zero determinant. The

determinant is a single number that is associated with a matrix and provides important

information about the matrix. If the determinant is 0, for example, the matrix is not

full rank. In this case, the matrix is said to be singular. When a matrix can be inverted,

we say that it is regular.

Computation of the inverse can be quite complicated and is not something we have

to worry about much. What is useful is awareness of some of the properties of the

inverse. These include:

1.
(
A−1

)−1
= A.

2.
(
A>
)−1

=
(
A−1

)>
.

3. (kA)
−1

= k−1A−1, where k is a scalar.

4. Let A and B be two matrices of order m×m. Then (AB)
−1

= B−1A−1.

Inverses come in particularly handy when we try to solve systems of equations.

B.3 Representing Equations Through Matrices

B.3.1 A Single Linear Equation

The regression function for a single unit is a single linear equation. The generic linear

equation takes the form of

y = a1x1 + a2x2 + · · ·+ aKxK

It is quite easy to represent this equation in matrix form using the inner-product. Define

a> = (a1 a2 · · · aK) and x> = (x1 x2 · · ·xK). then the linear equation is given by

y = a>x = x>a
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B.3.2 A System of Linear Equations

Across units, the regression function is a system of n equations. The generic system of

equations takes the form of

y1 = a11x1 + a12x2 + · · ·+ a1KxK

y2 = a21x1 + a22x2 + · · ·+ a2KxK
...

...

yM = aM1x1 + aM2x2 + · · ·+ aMKxK

We can represent this by defining the vector y> = (y1 y2 · · · yM ), the vector x> =

(x1 x2 · · ·xK), and the matrix

A =


a11 a12 · · · a1K

a21 a22 · · · a2K

...
...

. . .
...

aM1 aM2 · · · aMK


The system of equations now is equal to

y = Ax

B.3.3 A Single Quadratic Equation

In statistics, for example in least squares estimation, we sometimes encounter single

equations that are quadratic in the variables. An example is the equation

y = a11x
2
1 + (a12 + a21)x1x2 + a22x

2
2

Such an equation can be represented economically using matrices:

y = x>Ax

Here, x> = (x1 x2) and

A =

(
a11 a12

a21 a22

)
It is easy to see that this produces the desired equation: first create the matrix product

s> = x>A and then create the matrix product s>x. The notation encompasses any
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quadratic equation, regardless of the number of predictors. All one needs to do is to

increase the length of x and the dimensionality of A as is appropriate.

B.4 Solving Linear Equations

B.4.1 Regular Systems

Consider a system y = Ax of M equations in M unknowns. The vector y and matrix

A are known. The elements of x are unknown. We assume A to be regular, which

means that it has a non-zero determinant and can be inverted. In this case, the system

of equations can be solved quite easily using A−1. Specifically, by multiplying A−1

into both sides of the system we obtain

A−1y = A−1Ax

= Ix

= x

In principle, we can solve any system of equations in this manner, no matter how many

equations it encompasses.

As an example, consider the following system of 3 equations in 3 unknowns:

0 = −x1 + x2 + x3

4 = 2x1 + x2 − x3

7 = x1 + 3x2 + 2x3

We define y> = (0 4 7), x> = (x1 x2 x3), and

A =

 −1 1 1

2 1 −1

1 3 2


The determinant of A is -5, which means that it can be inverted. The inverse is2

A−1 =

 −
5
5 − 1

5 − 2
5

5
5

3
5 − 1

5

− 5
5 − 4

5
3
5


2We can obtain this, for example, by running the solve command in R.



B.4. SOLVING LINEAR EQUATIONS 271

The solution to the system of equation is now

x = A−1y

=

 2

1

1


Thus, x1 = 2, x2 = 1, and x3 = 1. It is easily verified that these are the correct

solutions for the system.

B.4.2 Irregular Systems

Let us revisit the previous example, but now we change the last equation:

0 = −x1 + x2 + x3

4 = 2x1 + x2 − x3

7 = −x1 + 4x2 + 2x3

Thus,

A =

 −1 1 1

2 1 −1

−1 4 2


When we now try the solution x = A−1y, it does not work. The determinant of A is

0 and the inverse is not defined. We say that A is singular.

What is the problem? If we look at the last row of A, we see that it is a perfect

linear function of the first two rows. Specifically, if we multiply the first row by 3

and then add the second row, we can recover the last row perfectly: a31 = 3a11 + a12;

a32 = 3a12+a22; and a33 = 3a13+a23. The third row of A is thus linearly dependent on

the other two rows and, as such, it does not contain any new information. Consequently,

we have a system that effectively only has two equations. With three unknowns, this

cannot produce a unique solution for x.

B.4.3 The Rank of a Matrix

The situation of linear dependence that we encountered in the previous example means

that the matrix A is not full rank. By rank we mean the following.

The rank of a matrix is the number of linearly independent (LIN) vectors

that constitute the matrix.
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In the example, we could make the following partition:

A =

 a>1
a>2
a>3


where a>1 = (−1 1 1), a>2 = (2 1 − 1), and a>3 = (−1 4 2). In order to achieve

full rank, all three vectors should be LIN, which means that none should be a perfect

linear function of the others. That is not true here, however, because a>3 = 3a>1 + a>2 .

Thus, there are only two LIN vectors and the rank is 2. This has implications for the

invertibility of the matrix:

If a matrix is not full rank, then, it is singular. This means that it has a

determinant of 0 and cannot be inverted.

It is useful to connect the concept of rank with that of order. This is quite easy to

do in a square matrix.

A square matrix is full rank if and only if its rank is equal to the number

of rows = columns in the matrix.

In rectangular matrices, the number of rows may deviate from the number of columns

and this has implications for the definition of full rank.

A r × c matrix is full rank if the rank is equal to min(r, c).

For example, the maximum achievable rank in a 4 × 2 matrix is 2—the minimum of

the pairing of the number of rows and columns. If the number of LIN vectors is equal

to 2, then we would say that the matrix is full rank.

B.5 Matrix Differentiation

We conclude the discussion of matrix algebra by revisiting the topic of derivatives. Any

equation or system of equation(s) represented through matrices can be differentiated.

The principles for doing this are no different than in ordinary algebra. The big difference

is that we collect all of the derivatives in matrices.

B.5.1 Differentiating a Scalar with Respect to a Vector

Earlier, we discussed the function y = a1x1 + a2x2 + a3x3 and represented this as

y = a>x = x>a. We are now interested in taking the partial derivatives of y with
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respect to all of the x variables. From Appendix A, we know that this produces the

following results: ∂y/∂x1 = a1, ∂y/∂x2 = a2, and ∂y/∂x3 = a3. The question is how

to arrange these derivatives in matrix form. Here we follow the following convention.

A derivative of a scalar with respect to a column vector produces a column

vector; a derivative of a scalar with respect to a row vector produces a

row vector.

Accordingly,

∂y

∂x
=


∂y
∂x1
∂y
∂x2
∂y
∂x3

 =

 a1

a2

a3

 = a

∂y

∂x>
=

(
∂y
∂x1

∂y
∂x2

∂y
∂x3

)
=
(
a1 a2 a3

)
= a>

B.5.2 Differentiating a Vector with Respect to a Vector

Differentiation of a vector with respect to a vector becomes important in the context

of systems of equations. Consider, for example, the following system of two linear

equations:

y1 = a11x1 + a12x2 + a13x3

y2 = a21x1 + a22x2 + a23x3

Earlier, we saw that we can represent this system as y = Ax, where y> = (y1 y2),

x> = (x1 x2 x3), and

A =

(
a11 a12 a13

a21 a22 a23

)
For this system of equations, we can identify six partial derivatives: (1) ∂y1/∂x1 =

a11; (2) ∂y2/∂x2 = a12; (3) ∂y1/∂x3 = a13; (4) ∂y2/∂x1 = a21; (5) ∂y2/∂x2 = a22;

and (6) ∂y2/∂x3 = a23. The question is again how to arrange these in matrix form. If

we want to place all of the derivatives of y1 in a single row and do the same with the

derivatives for y2, then we get the following result:

∂y

∂x>
=

(
∂y1
∂x>
∂y2
∂x>

)
=

(
a11 a12 a13

a21 a22 a23

)
= A

We see that the partial derivative of y can be partitioned into two partial derivatives,

one for y1 and the other for y2. We want each of these partitions to produce a row
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vector and, as per the convention outlined earlier, this means that we differentiate with

respect to a row vector, in this case x>. If we want to place the first derivatives in two

column vectors, then the same logic produces the following result.

∂y>

∂x
=

(
∂y1
∂x

∂y2
∂x

)
=

 a11 a21

a12 a22

a13 a23

 = A>

B.5.3 Differentiation of Quadratic Functions

Consider the quadratic equation y = x>Ax, where x is of order K × 1. To find

the partial derivatives of y with respect to the elements of x we borrow the idea of

differentiation by parts from calculus. Define the K × 1 vector u = Ax and the 1×K
vector v = x>A. Then y can be expressed in two different ways: (1) y = x>u and (2)

y = vx. Both expressions fall in the category of differentiating a scalar with respect to

a vector. Based on the earlier results,

∂x>u

∂x
= u

∂vx

∂x
= v>

The theory of differentiation by parts now states that

∂y/∂x = u + v>

= Ax +
(
x>A

)>
= Ax + A>x

=
(
A + A>

)
x

A special case arises when A is symmetric. In this case, A> = A and ∂y/∂x = 2Ax.
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Regression Proofs

C.1 Simple Regression

C.1.1 R-Squared and Correlation

In simple regression analysis, the coefficient of determinant is equal to the square of

the correlation coefficient. From Equation 1.5, we know that

R2 = 1−
∑
i e

2
i∑

i(yi − ȳ)2

The denominator is equal to (n− 1)s2
Y , where sY is the standard deviation of Y . The

regression residuals are given by ei = yi− ŷi = yi− β̂0− β̂1xi. From Equation 3.3, we

know that β̂0 = ȳ − β̂1x̄, so that ei = (yi − ȳ) − β̂1(xi − x̄). From Equation 3.4, we

know that β̂1 = sXY /s
2
X . Thus,

ei = (yi − ȳ)− sXY
s2
X

(xi − x̄)

and

∑
i

e2
i =

∑
i

(yi − ȳ)2 − 2
sXY
s2
X

∑
i

(yi − ȳ)(xi − x̄) +

(
sXY
s2
X

)2∑
i

(xi − x̄)2

= (n− 1)s2
Y − 2

sXY
S2
X

(n− 1)sXY +

(
sXY
s2
X

)2

(n− 1)s2
X

275
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This may be written as (n− 1)(s2
Xs

2
Y − s2

XY )/s2
X . With this alternative expression for

the SSE in simple regression analysis, the coefficient of determination becomes

R2 = 1− (n− 1)s2
Xs

2
Y − s2

XY

(n− 1)s2
Xs

2
Y

= 1− 1 +
s2
XY

s2
Xs

2
Y

=
s2
XY

s2
Xs

2
Y

We know that the Pearson product moment correlation coefficient is r = sXY /(sXsY ),

so that it follows that R2 = r2.

C.1.2 Variance of the Predicted Values

We are interested in obtaining a formula for the sampling variance of the predicted

values that emerge from a simple regression analysis. These predictions are given by

ŷi = β̂0 + β̂1xi. Thus, we are interested in V [ŷi]. By definition,

V [ŷi] = E
[
(ŷi − E[ŷi])

2
]

Expanding the expectation of the predicted values, we have E[ŷi] = E[β̂0 + β̂1xi] =

E[β̂0] + E[β̂1]xi = β0 + β1xi. Here we took advantage of the Gauss-Markov theorem

and its implication that β̂0 and β̂1 are unbiased. Thus,

V [ŷi] = E

{[
(β̂0 + β̂1xi)− (β0 + β1xi)

]2}
= E

{[
(β̂0 − β0) + (β̂1 − β1)xi

]2}
= E

[
(β̂0 − β0)2

]
︸ ︷︷ ︸

V ar[β̂0]

+2xiE
[
(β̂0 − β0)(β̂1 − β1)

]
︸ ︷︷ ︸

Cov[β̂0,β̂1]

+x2
i E
[
(β̂1 − β1)2

]
︸ ︷︷ ︸

V ar[β̂1]
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We know that V ar[β̂0] = σ2
(

1
n + x̄2∑

i(xi−x̄)2

)
, V ar[β̂1] = σ2∑

i(xi−x̄)2 , and Cov[β̂0, β̂1] =

−x̄V ar[β̂1]. Substitution of these results yields

V [ŷi] =
σ2∑

i(xi − x̄)2

(∑
i(xi − x̄)2

n
+ x̄2 + x2

i − 2x̄xi

)
=

σ2∑
i(xi − x̄)2

(∑
i(xi − x̄)2

n
+ (xi − x̄)2

)
= σ2

(
1

n
+

(xi − x̄)2∑
i(xi − x̄)2

)

C.2 Multiple Regression

C.2.1 Residuals

By definition, the vector of residuals is e = y − ŷ. Since ŷ = Hy, the residuals may

also be written as

e = y −Hy = (I−H)y

It is then easy to see that e and ŷ are uncorrelated:

E[ŷ>e] = E
[
(Hy)>(I−H)y

]
= E

y>H>Iy − y>H>H︸ ︷︷ ︸
H>

y


= E

[
y>H>y − y>H>y

]
= 0

The second line takes advantage of both the symmetry of the hat matrix (H = H>)

and its idempotency (H>H = H>).

In the expression we derived, the residuals are a function of the observed dependent

variable. We can also make them a function of the errors of the population regression
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model. Since y = Xβ + ε, we can write the residuals as

e = (I−H)(Xβ + ε)

= Xβ + ε− H︸︷︷︸
X(X>X)−1X>

Xβ −Hε

= Xβ + ε−X(X>X)−1X>Xβ −Hε

= Xβ + ε−Xβ −Hε

= (I−H)ε

The residuals are thus a function of the errors. Under the assumption that E[ε] = 0, it

can then be easily shown that E[e] = 0. That is, the residuals have a mean of zero. It

can also be demonstrated that V[e] = σ2(I−H). Thus, the variance-covariance matrix

of the residuals differs from the variance-covariance matrix of the errors, which under

the usual assumptions is V[ε] = σ2I. The differences manifest themselves both on the

diagonal and off-diagonal. Since the diagonal hat values may be different from each

other, the variances of the individual residuals may differ even if ε is homoskedastic.

Since the off-diagonal hat values may not be 0, the covariances between the residuals

may be non-zero even if ε does not suffer from autocorrelation.1

C.2.2 OLS

The least squares criterion is given by S = ε>ε. Substituting ε = y − Xβ and

expanding yields

S = (y −Xβ)>(y −Xβ)

= (y> − β>X>)(y −Xβ)

= y>y − y>Xβ − β>X>y + β>X>Xβ

= y>y − 2β>X>y + β>X>Xβ

The last line follows from the fact that y>Xβ and β>X>y are identical scalars and

may hence be added together.

To minimize S, we need to differentiate it with respect to the elements in the vector

β. We can reformulate S in the following manner:

S = s1 + s2 + s3,

1Specifically, 0 < hii < 1 and −.5 < hij < .5.
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where

s1 = y>y

s2 = −2β>X>y

s3 = β>X>Xβ

Setting X>y = a and X>X = C, this can be simplified further:

s1 = y>y

s2 = −2β>a

s3 = β>Cβ

Here it is important to note that C is a symmetric matrix.

We can now differentiate S with respect to the vector β. Because the derivative

of a sum is equal to the sum of the derivatives, this amounts to

∂S

∂β
=
∂s1

∂β
+
∂s2

∂β
+
∂s3

∂β

Since s1 is not a function of β, it follows that

∂s1

∂β
= 0,

where 0 is a (K + 1)× 1 vector of 0s. The derivative of s2 follows from the results on

scalar-vector differentiation, presented in Appendix B.5:

∂s2

∂β
= −2a

= −2X>y

Finally, the derivative of s3 follows from the results about differentiating quadratic

functions (Appendix B.5):

∂s3

∂β
= 2Cβ

= 2X>Xβ
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Thus, the derivative of S is given by

∂S

∂β
= 0− 2X>y + 2X>Xβ

= 2
(
X>Xβ −X>y

)
If we set this to 0, we can derive the OLS estimator as is shown in Chapter 5.1.

C.2.3 Gauss-Markov Theorem

The Gauss-Markov theorem states that the OLS/ML estimator of the regression

coefficients is the best linear unbiased estimator if Assumptions 4.2-4.3 are met.

To prove this result, we proceed as follows.

OLS Is a Linear Estimator It is easy to demonstrate that the OLS estimator

is a linear estimator:

β̂ = (X>X)−1X>︸ ︷︷ ︸
A

y

= Ay

Together, β̂, A, and y form a linear system of equations and, hence, it follows

that the OLS estimator is a linear function of the data contained in y.

OLS Is Unbiased To demonstrate that OLS is unbiased, we begin by re-

writing the estimator:

β̂ =
(
X>X

)−1
X>y

=
(
X>X

)−1
X>(Xβ + ε)

=
(
X>X

)−1
X>Xβ +

(
X>X

)−1
X>ε

= β +
(
X>X

)−1
X>ε
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We now take the expectation of β̂:

E[β̂] = β +
(
X>X

)−1
E[X>ε]

= β +
(
X>X

)−1
0︸︷︷︸

Assumption 4.3

= β

Under Assumption 4.3, then, the estimator is a linear unbiased estimator.

OLS Is Best We can demonstrate that OLS is the best linear unbiased esti-

mator by contrasting it with the generic linear estimator

β̃ = Cy,

where C is a (K + 1) × n matrix such that C = B + A, A = (X>X)−1X>,

and B is conformable generic matrix. It can be demonstrated that

β̃ = [B + A]y

= [B + (X>X)−1X>][Xβ + ε]

= BXβ + Bε+ (X>X)−1X>Xβ + (X>X)−1X>ε

= BXβ + Iβ + Bε+ (X>X)−1X>ε

= [BX + I]β + [B + (X>X)−1X>]ε

Viewed in this light, β̂ is a special case of β̃ that arises when B = 0.

From the expression above, it is clear that β̃ is an unbiased estimator of

β if Assumption 4.3 holds, BX = 0 and if E[Bε] = 0. We assume that

both conditions hold true so that β̃ is a linear unbiased estimator. Making the

appropriate substitutions,

β̃ = β + [B + (X>X)−1X>]ε

We now derive the variance-covariance matrix of β̃. By definition, V[β̃] =

E[(β̃ − E[β̃])(β̃ − E[β̃])>]. Under the assumption that β̃ is unbiased, this
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reduces to

V[β̃] = E[(β̃)(β̃)>]

= E
[
β̃β̃
>]− ββ>

Substituting the expression for β̃, we can show that

β̃β̃
>

= ββ> + βε>B> + βε>X
(
X>X

)−1
+

Bεβ> + Bεε>B> + Bεε>X
(
X>X

)−1
+(

X>X
)−1

X>εβ> +
(
X>X

)−1
X>εε>B> +(

X>X
)−1

X>εε>X
(
X>X

)−1

We now take the expectation of this expression, where we keep four things in

mind: (1) BX = 0; (2) E[Bε] = 0; (3) E[X>ε] = 0; and (4) E[εε>] = σ2I

(Assumption 4.2).

E[β̃β̃
>

] = ββ> + βE[(Bε)>]︸ ︷︷ ︸
0>

+βE[ε>X]︸ ︷︷ ︸
0>

(
X>X

)−1
+

E[Bε]︸ ︷︷ ︸
0

β> + σ2BB> + σ2 BX︸︷︷︸
0

(
X>X

)−1
+

(
X>X

)−1
E[X>ε]︸ ︷︷ ︸

0>

β> + σ2
(
X>X

)−1
(BX)>︸ ︷︷ ︸

0>

+

σ2
(
X>X

)−1
X>X

(
X>X

)−1

= ββ> + σ2

[
BB> +

(
X>X

)−1
]

Substituting this result into the expression for the variance of β̃, we get

V[β̃] = σ2

[
BB> +

(
X>X

)−1
]
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where BB> is positive definite.2

The only thing that is now left to do is to compare this variance to the

variance of the OLS estimator. As we shall demonstrate in the next section of

the Appendix,

V[β̂] = σ2
(
X>X

)−1

Consequently,

V[β̃]−V[β̂] = σ2BB>

Due to the fact that σ2 > 0 and BB> is positive definite, it follows that the

expression above is greater than 0. This means that any other linear unbiased

estimator has a greater variance than the OLS estimator and, as such, is less

efficient. Or in other words, OLS is the best linear unbiased estimator.

C.2.4 Bias in the MLE of the Regression Variance

The MLE of the regression variance is given by σ̂2 = e>e/n. To compute the

bias in this estimator, we start by showing the expectation of e>e. We have

already seen that e = (I −H)ε = ε −Hε. Consequently, the sum of squared

residuals may be written as

e>e = (ε> − ε>H)(ε−Hε)

= ε>ε− ε>Hε− ε>Hε+ ε>Hε

= ε>ε− ε>Hε

= ε>(I−H)ε

= ε>Mε

=

n∑
i=1

n∑
j=1

εiεjmij

2One can think of positive definiteness as the matrix equivalent of saying that something
is strictly positive. More precisely, a matrix Q is positive definite if for all non-zero vectors x,
the product x>Qx returns a positive value.
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where mij = 1− hij . The expectation of the sum of squared residuals is

E[e>e] = E

∑
i

∑
j

εiεjmij

 = σ2
∑
i

mii

This result follows from the fact that E[εiεj ] = σ2 if i = j and 0 otherwise

(courtesy of Assumption 4.2). We know that
∑

imii =
∑

i 1 −
∑

i hii =

n− (K + 1). Consequently,

E[e>e] = σ2(n−K − 1)

This means that

E[σ̂2] =
n−K − 1

n
σ2

Now let

s2 =
n

n−K − 1
σ̂2 =

e>e

n−K − 1

It is easily demonstrated that this estimator is unbiased:

E[s2] =
n

n−K − 1
E[σ̂2] =

n

n−K − 1

n−K − 1

n
σ2 = σ2

C.2.5 Standard Errors of the Regression Coefficients

By definition, V[β̂] = E[(β̂ − E[β̂])(β̂ − E[β̂])>]. If we can assume that the

OLS/ML estimator is unbiased, then

V[β̂] = E
[
(β̂ − β)(β̂ − β)>

]
= E

[
β̂β̂
>]− ββ>

We know that β̂ = β +
(
X>X

)−1
X>ε. Consequently,

β̂β̂
>

= ββ> + βε>X
(
X>X

)−1
+
(
X>X

)−1
X>εβ> +(

X>X
)−1

X>εε>X
(
X>X

)−1
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Taking expectations, we have

E
[
β̂β̂
>]

= ββ> + βE
[
ε>X

] (
X>X

)−1
+
(
X>X

)−1
E
[
X>ε

]
β> +(

X>X
)−1

X>E
[
εε>

]
X
(
X>X

)−1

Under Assumption 4.3, the second and third terms vanish. Under Assumption

4.2, E
[
εε>

]
= σ2I. Thus,

E
[
β̂β̂
>]

= ββ> +
(
X>X

)−1
X>

[
σ2I
]
X
(
X>X

)−1

= ββ> + σ2
(
X>X

)−1
X>X

(
X>X

)−1

= ββ> + σ2
(
X>X

)−1

Substitution yields

V[β̂] = ββ> + σ2
(
X>X

)−1
− ββ>

= σ2
(
X>X

)−1

C.2.6 Standard Errors of the Predicted Values

For the predicted values ŷi = β̂0 + β̂1xi1 + · · · + β̂KxiK , we can derive the

standard errors in the following way. By definition, V [ŷi] = E
[
(ŷi − E[ŷi])

2
]
.

We can easily demonstrate that E[ŷi] = E[β̂0] +E[β̂1]xi1 + · · ·+E[β̂K ]xiK =

β0 + β1xi1 + · · · + βKxiK , assuming that the OLS estimators are unbiased.

Consequently,

ŷi − E[ŷi] =
(
β̂0 + β̂1xi1 + · · ·+ β̂KxiK

)
−

(β0 + β1xi1 + · · ·+ βKxiK)

= (β̂0 − β0) + (β̂1 − β1)xi1 + · · ·+ (β̂K − βK)xiK
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We know that β̂0 = ȳ − β̂1x̄1 − · · · − β̂K x̄K . We also can show that ȳ =

β0 + β1x̄1 + · · ·+ βK x̄K + ε̄ or β0 = ȳ − β1x̄1 − · · · − βK x̄K − ε̄. Thus,

β̂0 − β0 =
(
ȳ − β̂1x̄1 − · · · − β̂K x̄K

)
−

(ȳ − β1x̄1 − · · · − βK x̄K − ε̄)

= −(β̂1 − β1)x̄1 − · · · − (β̂K − βK)x̄K + ε̄

Substitution yields

ŷi − E[ŷi] = −(β̂1 − β1)x̄1 − · · · − (β̂K − βK)x̄K + ε̄+

(β̂1 − β1)xi1 + · · ·+ (β̂K − βK)xiK

= (β̂1 − β1)(xi1 − x̄1) + · · ·+ (β̂K − βK)(xiK − x̄K) + ε̄

Squaring the left-hand side yields

(ŷi − E[ŷi])
2 =

[
(β̂1 − β1)(xi1 − x̄1) + · · ·+ (β̂K − βK)(xiK − x̄K) + ε̄

]2

=
∑
k

(β̂k − βk)2(xik − x̄k)2 +

2
∑
j<k

(β̂j − βj)(β̂k − βk)(xij − x̄j)(xik − x̄k) +

∑
k

(β̂k − βk)(xik − x̄k)ε̄+

ε̄2

We conclude the derivation by taking expectations over both sides. Here, we

keep in mind that (1) E[(β̂k − βk)2] = V ar[β̂k]; (2) E[(β̂j − βj)(β̂k − βk)] =

Cov[β̂j , β̂k]; (3) E[ε̄] = 0; and E[ε̄2] = σ2/n. It then follows that

E
[
(ŷi − E[ŷi])

2
]

=
∑
k

(xik − x̄k)2V ar[β̂k] +

2
∑
j<k

(xij − x̄j)(xik − x̄k)Cov[β̂j , β̂k] +
σ2

n
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C.2.7 ANOVA

By definition the sample variation in Y is given by
∑

i(yi− ȳ)2. In the sample,

yi = ŷi + ei. Hence,∑
i

(yi − ȳ)2 =
∑
i

[(ŷi + ei)− ȳ]2

=
∑
i

(ŷiȳ)2 +
∑
i

e2
i + 2

∑
i

(ŷi − ȳ)ei

The last term vanishes. It can be written as
∑

i ŷiei − ȳ
∑

i ei. In Chapter

4, we saw that the predicted values and the residuals are orthogonal so that∑
i ŷiei = 0. We also know that the residuals sum to 0, so that ȳ

∑
i ei = 0.

Consequently, ∑
i

(yi − ȳ)2 =
∑
i

(ŷi − ȳ)2 +
∑
i

e2
i

We can also present this result in matrix form. To do so, we begin by

considering the SST. Expansion of the scalar result yields:

∑
i

(yi − ȳ)2 =
∑
i

y2
i − nȳ2 =

∑
i

y2
i −

1

n

(∑
i

yi

)2

In matrix form,
∑

i y
2
i = y>y. To obtain

∑
i yi, we generate n dimensional

vector j> = (1 1 · · · 1). We can then write
∑

i yi = j>y. Of course, we

have the square of
∑

i yi. In matrix form, this can be written as (
∑

i yi)
2 =

(j>y)>j>y = y>Jy, where J = jj> is a n× n matrix consisting entirely of 1s.

Thus, we have the following result:

SST = y>y − 1

n
y>Jy = y>

(
I− 1

n
J

)
y

We now turn to the SSE. We can write
∑

i e
2
i as e>e, which can be expanded
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as

e>e = (y −Xβ̂)>(y −Xβ̂)

= y>y − 2β̂
>

X>y + β̂
>

X>Xβ̂

= y>y − 2β̂
>

X>y + β̂
>

X>X
(
X>X

)−1
X>y︸ ︷︷ ︸

β̂

= y>y − 2β̂
>

X>y + β̂
>

IX>y

= y>y − β̂>X>y

This can also be written a bit differently. Setting β̂ =
(
X>X

)−1
X>y, the last

term becomes y>X
(
X>X

)−1
X>y = y>Hy, so that

SSE = y>y − y>Hy = y> (I−H) y

We obtain the SSR from the equation SST = SSR + SSE or SSR =

SST − SSE:

SSR = y>
(

I− 1

n
J

)
y − y> (I−H) y

= y>
(

H− 1

n
J

)
y

This is equivalent to SSR = β̂
>

X>y − (1/n)y>Jy.

C.2.8 Shortcomings of t-Tests When Testing Joint Hypotheses

Consider the following regression model: yi = β0 + β1xi + β2zi + εi. We

formulate the null hypothesis H0 : β1 = β2 = 0. Kmenta (1997) shows that

F =
t21 + t22 + 2t1t2rXZ

2(1− r2
XZ)

,

where t1 is the test statistic associated with β̂1, t2 is the test statistic associated

with β̂2, and rXZ is the correlation between the two predictors. If rXZ = 0, then

F = .5(t21 + t22). Since this is simply the arithmetic mean of the two squared t-
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test statistics, we would not expect differences in the statistical conclusions that

we derive from the t-tests and the F -test. However, if rXZ → 1, i.e., there is

near-perfect multicollinearity, then F can be large even if the two t-test statistics

are small. In this case, individual t-tests might suggest that the parameters are

zero in the population, while the F -test might suggest the opposite.

C.2.9 Expected Mean Squares

In this appendix, we derive the expectations of MSR and MSE. To reduce

complexity, we do this for the simple regression model. Following Appendix

C.2.4, we know that

E[MSE] = E[s2] = σ2

In the simple regression model, MSR = SSR/1 = SSR. Taking the expecta-

tion, we get

E[MSR] = E[SSR]

= E

[∑
i

(ŷi − ȳ)2

]

= E

∑
i

(β̂0 + β̂1xi︸ ︷︷ ︸
ŷi

−ȳ)2


= E

∑
i

(ȳ − β̂1x̄︸ ︷︷ ︸
β̂0

+β̂1xi − ȳ)2


= E

[
β̂2

1

∑
i

(xi − x̄)2

]
= E[β̂2

1 ]︸ ︷︷ ︸
Everything else is fixed

∑
i

(xi − x̄)2

This can be expanded further. Noting that Var(β̂1) = E[β̂2
1 ] − (E[β̂1])2, it

follows that E[MSR] = [Var(β̂1) + (E[β̂1])2]
∑

i(xix̄)2. Since β̂1 is unbiased,
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this may also be written as E[MSR] = Var(β̂1)
∑

i(xi− x̄)2 +β2
1

∑
i(xi− x̄)2.

From Chapter 3, we know that Var(β̂1) = σ2/
∑

i(xi− x̄)2. Substitution yields

E[MSR] = σ2 + β2
1

∑
i

(xi − x̄)2

Under the null hypothesis β1 = 0, this reduces to E[MSR] = σ2.

C.2.10 Derivation of the F-test Statistic

Consider the multiple regression model yi ∼ N (µi, σ) with µi = β0 + βkxik.

Under the null hypothesis H0 : β1 = β2 = · · · = βK = 0, the model reduces

to yi ∼ N (µ, σ), where µ = β0. Under the null hypothesis, then, we can

consider the observations to be n independent draws from the identical normal

distribution with mean µ and variance σ2.

This result is important because it allows us to invoke Cochran’s theorem

(Cochran, 1934). This theorem states that, for a series of normally and indepen-

dently distributed (n.i.d.) variables with mean µ and variance σ2, the SST may

be decomposed into Q sums of squares, SSq, each with degrees of freedom νq.

Furthermore, the terms SSq/σ
2 are independent chi-squared variates, as long

as
∑Q

q=1 νq = n− 1.

Under H0 the n.i.d. assumption with identical mean and variance is met.

In the ANOVA, we decompose SST into two components: (1) SSR with K

degrees of freedom and (2) SSE with n − K − 1 degrees of freedom. Noting

that the degrees of freedom add to n− 1, we now know that

SSR

σ2
∼ χ2

K

SSE

σ2
∼ χ2

n−K−1

We now turn to another result from mathematical statistics, namely that

the ratio of two independent chi-squared variates, each divided by the degrees
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of freedom, follows an F-distribution. Hence,

χ2
K
K

χ2
n−K−1

n−K−1

=
SSR
Kσ2

SSE
(n−K−1)σ2

=
MSR

MSE
∼ F [K,n−K − 1]

C.2.11 Variance of the Fitted Values

By definition, Var(ŷi) = E
[
ŷi − E[ŷi])

2
]
. We know that E[ŷi] = E[yi]. Sub-

stitution yields, Var(ŷi) = E
[
(ŷi − E[yi])

2
]
. We know that ŷi = β̂0+

∑
k β̂kxik

and E[yi] = β0 +
∑

k βkxik. Hence,

Var(ŷi) = E

(β̂0 − β0 +
∑
k

(β̂k − βk)xik

)2


We also know that β̂0 = ȳ −
∑

k β̂kx̄k. Further, β0 = yi −
∑

k βkxik − ε. We

manipulate the latter equation by summing β0 n times and then dividing by n:

1

n

∑
i

β0 = β0

=
1

n

∑
i

yi −
1

n

∑
k

∑
i

βkxik −
1

n

∑
i

εi

= ȳ −
∑
k

βkx̄k − ε̄

Consequently,

β̂0 − β0 =

(
ȳ −

∑
k

β̂kx̄k

)
−

(
ȳ −

∑
k

βkx̄k − ε̄

)
= −

∑
k

(β̂k − βk)x̄k + ε̄

Substitution into the formula for the variance of the fitted values now yields

Var(ŷi) = E

[(
(β̂k − βk)(xik − x̄k) + ε̄

)2
]
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We now expand and distribute the expected value operator over the constituent

terms:

Var(ŷi) =
∑
k

E
[
(β̂k − βk)2

]
(xik − x̄)2 +

2
∑
j<k

E
[
(β̂j − βj)(β̂k − βk)

]
(xij − x̄j)(xik − x̄k)

2
∑
k

E
[
β̂k − βk

]
E [ε̄(xik − x̄)] +

E
[
ε̄2
]

The terms in the third line disappear because we assume β̂k to be unbiased,

so that E[β̂k − βk] = E[β̂k] − βk = βk − βk = 0. In the first line, we rec-

ognize the terms E

[(
β̂k − βk

)2
]

as variances Var(β̂k). In the second line,

the terms E
[(
β̂j − βj

)(
β̂k − βk

)]
are covariances of the type Cov(β̂j , β̂k).

Finally, E[ε̄2] is equal to Var(ε̄). Being the variance of a sample mean, this is

equal to σ2/n. Substituting these results, we get

Var(ŷi) =
∑
k

Var(β̂k)(xik − x̄)2 +

2
∑
j<k

Cov(β̂j , β̂k)(xij − x̄j)(xik − x̄k) +

σ2

n

C.2.12 Adjusted R2

By definition,

R̄2 = 1− SSE/(n−K − 1)

SST/(n− 1)
= 1− SSE

SST

n− 1

n−K − 1
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From the definition of the coefficient of determination, we know that SSE
SST =

1−R2. Substitution yields

R̄2 = 1−
(
1−R2

) n− 1

n−K − 1

C.2.13 R2 and the F-Statistic

We know that

F =
MSR

MSE
=
SSR

SSE

n−K − 1

K

We also know that

R2 =
SSR

SST
= 1− SSE

SST

From the last result, we now derive the following expressions:

SSR = R2 · SST

SSE =
(
1−R2

)
· SST

Substitution in the formula for F yields

F =
R2 · SST

(1−R2) · SST
n−K − 1

K
=

R2

1−R2

n−K − 1

K

C.3 Model Fit and Comparison

C.3.1 Kullback-Leibler Information

Kullback-Leibler Information is a criterion that measures how far a model strays

from the truth. Let f(x) denote the true model. Further, let g(x|θ) denote the

model that we estimate, which postulates that the observed data depend on the

parameter(s) θ. The Kullback-Leibler criterion is now defined as (see Burnham
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and Anderson, 2004, pp. 266-267):

I[f, g] =

∫
f(x) ln

(
f(x)

g(x|θ)

)
dx

=

∫
f(x) ln [f(x)] dx−

∫
f(x) ln [g(x|θ)] dx︸ ︷︷ ︸

Definition of the mean
= C − Ef [ln(g(x|θ))]

Here, C may be treated as a constant, since the true model is assumed to always

be the same. Further, Ef [ln(g(x|θ))] is the expectation for the estimated model.

The best model is the one that minimizes I.

As an example consider the normal distribution. Let the true distribution

be normal with a mean of µT and a variance of σ2
T . The estimated model also

stipulates a normal distribution but with a mean of µ and a variance of σ2.

After some mathematics, we can show that

I(f, g) =
1

2

[
ln

(
σ2

σ2
T

)
− 1 +

σ2
T + (µt − µ)2

σ2

]
Now imagine µT = 0 and σ2

T = 1. Further, let g1 denote the normal distribution

with mean 0 and variance 2, whereas g2 is the normal distribution with mean 1

and variance 1. It is now easy to show that I(f, g1) = 0.097 and I(f, g2) = 0.5.

Clearly, g1 is closer to the truth than g2.

C.3.2 The Akaike Information Criterion

The Kullback-Leibler criterion is a theoretical result. The statistician Akaike

showed how this result can be combined with maximum likelihood estimates

obtained from empirical data. Specifically, he showed that (see Burnham and

Anderson, 2004, p. 268):

`−K = C − Êθ̂[I(f, ĝ)]

Here, ` is the log-likelihood (see Chapter 3), K is the number of estimated

parameters in g, and C − Êθ̂[I(f, ĝ)] is the expected value of the Kullback-
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Leibler Information at the maximum likelihood estimates. Note that K is the

bias we incur when we use the log-likelihood as the estimator of the expected

Kullback-Leibler information. Subtracting K from the log-likelihood produces

an unbiased estimator.

The Akaike Information Criterion (AIC) is equal to minus two times the

expected value of the Kullback-Leibler Information. The multiplication by -2 is

completely arbitrary. Akaike did it because minus two times the log-likelihood,

which is also known as the deviance, was used widely in statistical inference.

One of the major benefits of using the AIC is that we do not need to know the

true model. Imagine, we have two competing models with probability densities

g and h, respectively. We can now write

AIC1 = −2`1 + 2K1 = −2C + 2Êθ̂1 [I(f, ĝ)]

AIC2 = −2`2 + 2K2 = −2C + 2Êθ̂2 [I(f, ĥ)]

Each of the AIC values still contains the component C, which pertains to the

true model, which is generally unknown. However, when we subtract the min-

imum AIC then this term disappears. It is easy to show this. For argument’s

sake, let g yield the better—i.e., smaller—value of AIC. We can now subtract

AIC1 from each of the terms above:

∆1 = AIC1 −AIC1

= 0

∆2 = AIC2 −AIC1

=
{
−2C + 2Êθ̂2 [I(f, ĥ)]

}
−
{
−2C + 2Êθ̂1 [I(f, ĝ)]

}
= 2

{
Êθ̂2 [I(f, ĥ)]− Êθ̂1 [I(f, ĝ)]

}
We observe that the terms involving C drop out, which means that we do not

need to know what the true model is.
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C.4 Non-Linear Models

C.4.1 Marginal Effect in the Log-Linear Model

The log-linear model is given by

ln yi = β0 +
∑
k

βk lnxik + εi

Writing this in terms of the dependent variable, we obtain

yi = exp

(
β0 +

∑
k

βk lnxik + εi

)

Taking the derivative with respect to xj yields

∂y

∂xj
=

βj
xj

exp

(
β0 +

∑
k

βk lnxik + εi

)
= βj

y

xj

Solving for βj , we obtain

βj =
∂y/y

∂xj/xj

The numerator is the relative change in the mean, whereas the denominator

is the relative change in the predictor of interest. We can turn these relative

changes into percentage changes by multiplying both the numerator and the

denominator by a factor of 100, which of course does not affect the overall

result.

C.4.2 Marginal Effects in Semi-Log Models

The generic log-lin model may be written as yi = exp (β0 +
∑

k βkxik + εi).

Taking the partial derivative with respect to xj yields

∂y

∂xj
= βj exp

(
β0 +

∑
k

βkxik + εi

)
= βjy
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Solving for βj , we get

βj =
∂y/y

∂xj

The numerator may be viewed as the relative change in Y , whereas the denom-

inator is the absolute change in xj .

The generic lin-log model is given by yi = β0 +
∑

k βk lnxik + εi. Taking

the partial derivative with respect to xj yields

∂y

∂xj
=

βj
xj

Solving for βj , we get

βj = xj
∂y

∂xj
=

∂y

∂xj/xj

The numerator is an absolute change in Y , whereas the denominator is a partial

change in xj .

C.5 Interaction Effects

C.5.1 Covariance Between the Interaction and Its Constituent

Terms

Consider yi = β0+β1xi+β2zi+β3xi×zi+εi, where X and Z are covariates. We

derive the covariance between the interaction and X. By definition, σxz,x =

E[(xz − E[xz])(x − E[x])]. Let xd = x − E[x]. Further, we know from

mathematical statistics that x · z = (xd +E[x])(zd +E[z]) = xdzd + xdE[z] +

zdE[x] + E[x]E[z] and that E[xz] = E[xdzd] + E[xd]E[z] + E[zd]E[x] +

E[x]E[z] = σx,z+E[x]E[z]. It then follows that xz−E[xz] = xdzd+xdE[z]+
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zdE[x]− σx,z. With all of these preparatory steps out of the way, we now get

σxz,x = E[(xz − E[xz])(x− E[x])]

= E[(xdzd + xdE[z] + zdE[x]− σx,z)xd]

= E

[(
xd
)2
zd
]

+
(
xd
)2
E[z] + xdzdE[x]− xdσx,z

= E

[(
xd
)2
zd
]

+ E

[(
xd
)2
]
E[z] + E[xdzd]E[x]− E[xd]σx,z

= E

[(
xd
)2
zd
]

+ σ2
xµz + σx,zµx

The last equation comes about by realizing that E[(xd)2] = σ2
x, E[xdzd] = σx,z,

and E[xd] = 0. Under multivariate normality, E
[(
xd
)2
zd
]

= 0, since this is the

multivariate moment of order 2 and 1, which is by definition 0. The covariance

between the interaction and z is derived analogously.

C.5.2 The Effect of Centering

The centered regression model is given by

yi = β0 + β1x
d
i + β2z

d
i + β3x

d
i × zdi + εi

Since xdi = xi − x̄ and zdi = zi − z̄, we may also write the model as

yi = β0 + β1(xi − x̄) + β2(zi − z̄) + β3(xi − x̄)× (zi − z̄) + εi

Upon expansion we get

yi = (β0 − β1x̄− β2z̄ + β3x̄z̄) +

(β1 − β3z̄)xi +

(β2 − β3x̄) zi +

β3xi × zi + εi

We see that the effect of the centered interaction term is identical to that of

the uncentered term. We also see that the effect of the uncentered version of
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x is equal to β1 − β3z̄, that the effect of the uncentered version of z is equal

to β2 − β3x̄, and that the uncentered intercept is β0 − β1x̄− β2z̄ + β3x̄z̄.

C.6 Influence and Normality

C.6.1 PRESS Residuals

By definition, the PRESS residuals, pi, are equal to yi − ŷi(i), where ŷi(i) is

the predicted value of the ith observation when the regression coefficients are

computed by omitting that observation. Kmenta (1997) shows that

β̂ − β̂(i) =

(
X>X

)−1
xiei

1− hii
,

where β̂(i) is the OLS estimator of β that comes about when the ith observation

is deleted. Now

pi = yi − x>i β̂(i)

= yi − x>i

[
β̂ −

(
X>X

)−1
xiei

1− hii

]

= yi − x>i β̂︸ ︷︷ ︸
ei

+

x>i

(
X>X

)−1
xi︸ ︷︷ ︸

hii

ei

1− hii

= ei +
hiiei

1− hii
=

ei
1− hii



Glossary

Akaike Information Criterion The Akaike Information Criterion provides a

metric for model evaluation that allows the researcher to select the best

model from a set. 132

analysis of covariance A statistical model in which the dependent variable

depends on factors and their interactions as well as one or more covariates.

The covariates are typically centered about their sample means. 167

analysis of variance (1) The decomposition of the sample variation in the de-

pendent variable (SST) into a part that is due to the regression (SSR)

and a part that is due to error (SSE). (2) A statistical model in which the

dependent variable depends solely on factors and their interactions. 108

autocorrelation The condition that different error terms are correlated with

each other: Cov[εi, εj ] 6= 0 for i 6= j. In time series analysis, this is also

referred to as serial correlation. 32

ceteris paribus Holding all else equal. 85

coefficient of determination Also known as the R-squared, the coefficient of

determination reveals how much of the variation in the dependent variable

is accounted for by the regression. Formulaically, R2 = SSR/SST =

1− SSE/SST . 13

covariate A continuous predictor. 8

cross-sectional data Cross sections of a population of units. A set of units

from the same population is analyzed at a single point in time. 32

300
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data generating process A process that is believed to have generated the data

that were collected. Often abbreviated as DGP. 22

dependent variable The variable that is being predicted or explained. Typi-

cally denoted as Y . 8

discrete change The change in an outcome that is due to a change of δ units

in a predictor, while holding all else constant. 22

dummy variable A variable that takes on the values 1 and 0. Typically used

in regression analysis to absorb the effects of discrete predictors. 166

elasticity The percentage change in an outcome that we can expect from a

one percent increase in a predictor, while holding all else constant. 160

error term A.k.a. the disturbance or simply the error. A stochastic compo-

nent that remains unobserved and is added to the model to absorb: (1)

omitted predictors; (2) measurement error in the dependent variable; and

(3) idiosyncratic variation in the dependent variable. The term should be

distinguished from residuals, which are observed and not stochastic. Error

terms are specified at the level of a population, whereas residuals pertain

to samples. 23

estimate The value that an estimator takes in a particular sample. 38

estimator A rule for computing a parameter based on the sample. 38

evidence ratio The ratio of the likelihoods of two models given the data. 146

exogeneity A variable or parameter is exogenous to the extent that it is deter-

mined by forces external to the model. Exogeneity can be strong or weak.

Under strong exogneity, E[ε|x] = 0. Under weak exogneity, E[εx] = 0.

33

factor A discrete or categorical predictor. 8

hat matrix A n× n matrix that maps the observed into the fitted values in a

regression model. 83
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hat value A diagonal element of the hat matrix. 242

homoskedasticity The assumption that the variance of the error term is con-

stant across units: V ar[εi] = σ2 = constant. When this assumption is

violated, we say that there is heteroskedasticity. 24

influence An attribute of a data point, whereby it has a strong influence on

the partial slope coefficient. Influence results from the combination of a

data point being a leverage point and an outlier. 239

interaction The product of two variables that allows us to explore moderation

in a regression model. 193

intercept The predicted value of the dependent variable when the predictor(s)

is/are 0. In simple regression analysis, this is the point where the crosses

the y-axis. 5

leverage point An observation with an atypical value on the predictor. 239

linear constraint A linear function involving the parameters of a statistical

model. 114

marginal effect The rate of change in an outcome, i.e., the change in an

outcome relative to an infinitesimally small change in a predictor, while

holding all else equal. If q is the outcome of interest (e.g., the mean),

then the marginal effect is given by ∂q/∂x. 21

maximum likelihood An estimation approach whereby the parameter values

are chosen in such a manner that they maximize the likelihood of the

data. 47

mean squares due to error The average of the squared residuals: MSE =∑n
i=1 e

2
i

n−K−1 = s2, where K is the number of regression coefficients, excluding

the constant. Also known as the mean squared error. 57

method of moments An estimation approach that exploits moment condi-

tions implied by the model in order to obtain an estimator. 44
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moderator A variable that influences the relationship between a predictor and

the dependent variable. 193

multicollinearity The situation that one or more predictor variables are (near)

perfect linear functions of other predictor variables.. 79

nested model A model Mj is nested inside another model Mk if it is a sub-

set of the latter: Mj ⊂ Mk. This means that we can derive Mj by

constraining one or more parameters in Mk. 133

ordinary least squares An estimation approach whereby the sum of the squared

residuals is being minimized with respect to the parameters. 39

outlier An observation with an atypical value on the dependent variable. 239

partial slope A slope coefficient associated with a predictor that is net of the

effects of other predictors in the model. 72

population regression function Also known as the conditional expectation

function, this gives the conditional expectation of the dependent vari-

able in a linear regression analysis: µi = E[yi|xi]. In simple regression

analysis, µi = β0 + β1xi; in multiple regression analysis, µi = x>i β. 24

population regression model The regression model stated at the level of the

population, including the error term. The simple population regression

model is yi = β0 + β1xi + εi. The multiple population regression model

is yi = x>i β + εi. 24

prediction The value that the dependent variable is expected to take given a

set of parameter estimates and a set of assumed values of the predictors.

Also known as predicted or fitted value. 8

predictor A variable that is used to predict the dependent variable. Typically

denoted as X, this is also known as the regressor or independent variable.

8
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regression line In simple regression analysis, a linear equation that generates

predictions on the basis of the values taken on by a single predictor. The

generic formula is ŷi = a+ b · xi. 5

regression through the origin A regression model in which the constant is

dropped. In simple regression analysis, this means that we force the

regression line to go through the origin. 11

residual The discrepancy between the observed and predicted values of the

dependent variable: ei = yi − ŷi. 5

root mean squared error The square root of the MSE or s =
√∑

i e
2
i /(n−K − 1).

Also known as the residual standard error, this can be used as a measure

of model fit. 130

sample regression function A function that is linear in the parameters and

that produces predicted values of the dependent variable in the sample

based on one or more predictors. In simple regression analysis, this func-

tion is equal to ŷi = a + b · xi. In multiple regression analysis, this is

ŷi = x>i β̂. 8

sample regression model The regression model stated at the level of the

sample, including the residuals. The simple sample regression model is

yi = a+b·xi+ei. The multiple sample regression model is yi = x>i β̂+ei.

8

sample size The number of observations in the sample/data. Typically indi-

cated as n. 9

simple slope The marginal effect of a predictor evaluated at different values

of a moderator variable. 201

slope The rate of change in the dependent variable for a change in the predictor

variable. 5

specification The process of developing a statistical model, which includes the

selection of predictors, the function linking the predictors to the dependent

variable, and distributional assumptions about the dependent variable. 23
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specification error Any erroneous choice in the model specification. Here,

erroneous means that the model postulates a data generating process

that departs from the true data generating process. 34

standardized regression coefficient A partial slope coefficient that removes

the measurement units of both the dependent variable and the predictor.

It is computed as β̂sj = β̂j
sxj
sy

. In simple regression analysis, the standard-

ized regression coefficient is equal to the correlation between the predictor

and the dependent variable. 90

sum of squared errors The sum of the squared residuals: SSE =
∑n

i=1 e
2
i .

Also known as the residual sum of squares. 12

sum of squares regression The sum of the squares deviations of the predicted

values and the mean of the dependent variable: SSR =
∑n

i=1(ŷi − ȳi)2.

108

sum of squares total The variation in the dependent variable, i.e., (n−1)·s2
Y .

13

time series data Data for which the units are successive time points such as

days, weeks, months, quarters, or years. 33

variance-covariance matrix of the estimators For the multiple regression model,

the VCE of the regression coefficients is given by σ2
(
X>X

)−1
. 103
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